999 resultados para in situ polymerization


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A simple in-situ synthesis route for gold nanoparticles (NPs) was developed to realize multifunctions for silk fabrics. The gold NPs were prepared in a heated solution containing white silk fabric samples. The silk fabrics were colored red and brown by the gold NPs because of their localized surface plasmon resonance (LSPR) property. Gold nanospheres on silk were obtained at a low gold content, and gold nanoplates were synthesized as the gold content increased. The silk fabrics treated with gold NPs showed good light fastness. Moreover, the gold NPs endowed silk fabrics with strong antibacterial activity, excellent UV protection property and enhanced thermal conductivity. © 2013 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In situ neutron diffraction of two binary Mg alloys, Mg-0.5 wt.% Y and Mg-2.2 wt.% Y have been carried out in compression. The experimental data has been modelled using the elastoplastic self-consistent methodology in order to determine the critical resolved shear stress for basal slip, second-order 〈c + 〉 pyramidal slip and {101̄2} twinning. It was found that the addition of Y strengthens all three of the deformation modes examined. However, increasing the Y concentration from 0.5% to 2.2% showed no additional hardening in the basal slip and {101̄2} twinning modes, indicating that solute strengthening of these deformation modes is already exhausted by a concentration of 0.5% Y. Second-order pyramidal slip showed additional solute hardening at the higher concentration. © 2014 Published by Elsevier Ltd. on behalf of Acta Materialia Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Molybdenum disulfide (MoS2) nanosheets have unique physical and chemical properties, which make it a perfect candidate for next generation electronic and energy storage applications. Herein, we show the successful synthesis of nitrogen-doped MoS2 nanosheets by a simple, effective and large-scale approach. MoS2 nanosheets synthesised by this method show a porous structure formed by curled and overlapped nanosheets with well-defined edges. Analysis of the nanosheets shows that they have an enlarged interlayer distance and high specific surface area. X-ray photoelectron spectroscopy analysis shows the nanosheets have Mo-N bond indicating successful nitrogen doping. The nitrogen content of the product can be modulated by adjusting the ratio of starting materials easily within the range from ca. 5.8 to 7.6 at%.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In-situ neutron diffraction was employed to monitor the evolution of nano-bainitic ferrite during low temperature isothermal heat treatment of austenite. The first 10 peaks (austenite, γ and ferrite, α) were monitored during austenization, homogenization, rapid cooling and isothermal holding at 573 K. Changes in the α-110 and γ-111 peaks were analysed to determine the volume fraction changes and hence the kinetics of the phase transformation. Asymmetry and broadening in the α-200 and γ-200 peaks were quantified to lattice parameter changes due to carbon redistribution as well as the effects of size and dislocation density. Atom Probe Tomography was used to confirm that, despite the presence of 1.5 mass % Si, carbide formation was evident. This carbide formation is the cause of poor ductility, which is lower than expected in such steels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A laboratory-based transmission X-ray diffraction technique was developed to measure elastic lattice strains parallel to the loading direction during in situ tensile deformation. High-quality transmission X-ray diffraction data were acquired in a time frame suitable for in situ loading experiments by application of a polycapillary X-ray optic with a conventional laboratory Cu X-ray source. Based on the measurement of two standard reference materials [lanthanum hexaboride (NIST SRM 660b) and silicon (NIST SRM 640c)], precise instrumental alignment and calibration of the transmission diffraction geometry were realized. These results were also confirmed by the equivalent data acquired using the standard Bragg-Brentano measurement geometry. An empirical Caglioti function was employed to describe the instrumental broadening, while an axis of rotation correction was used to measure and correct the specimen displacement from the centre of the goniometer axis. For precise Bragg peak position and hkil intensity information, a line profile fitting methodology was implemented, with Pawley refinement used to measure the sample reference lattice spacings (d o (hkil)). It is shown that the relatively large X-ray probe size available (7 × 714mm) provides a relatively straightforward approach for improving the grain statistics for the study of metal alloys, where grain sizes in excess of 114μm can become problematic for synchrotron-based measurements. This new laboratory-based capability was applied to study the lattice strain evolution during the elastic-plastic transition in extruded and rolled magnesium alloys. A strain resolution of 2 × 10-4 at relatively low 2θ angles (20-65° 2θ) was achieved for the in situ tensile deformation studies. In situ measurement of the elastic lattice strain accommodation with applied stress in the magnesium alloys indicated the activation of dislocation slip and twin deformation mechanisms. Furthermore, measurement of the relative change in the intensity of 0002 and 10 3 was used to quantify {10 2} 011 tensile twin onset and growth with applied load.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Natural rubber latex (NRL) from Hevea brasiliensis was used as a matrix to synthesize gold nanoparticles (AuNPs), leading to an organic-inorganic hybrid latex of NRL-supported AuNPs (AuNPs@NRL). The in situ and environmentally friendly preparation of AuNPs in an NRL matrix was developed by thermal treatment without using any other reducing agents or stabilizers because natural rubber particles and non-rubber components present in serum can serve as supporters for the synthesized AuNPs. As a result, the nanosized and well-dispersed AuNPs not only are decorated on the surface of natural rubber particles, but also can be found in the serum of NRL. The size of the AuNPs presented in NRL matrix can be controlled by adjusting the concentration of NRL. Furthermore, the flexible surface-enhanced Raman scattering (SERS) substrates made from the AuNPs@NRL through vacuum filtration presented good enhancement of the Raman probe molecule of 4-mercaptopyridine and outstanding SERS reproducibility. The capability of synthesizing the bio-supported nanohybrid latex provides a novel green and simple approach for the fabrication of flexible and effective SERS substrates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The growth mechanism and kinetics of mesoporous silica nanoparticles (MSNs) were investigated for the first time by using a synchrotron time-resolved small-angle X-ray scattering (SAXS) analysis. The synchrotron SAXS offers unsurpassed time resolution and the ability to detect structural changes of nanometer sized objects, which are beneficial for the understanding of the growth mechanism of small MSNs (∼20 nm). The Porod invariant was used to quantify the conversion of tetraethyl orthosilicate (TEOS) in silica during MSN formation, and the growth kinetics were investigated at different solution pH and temperature through calculating the scattering invariant as a function of reaction time. The growth of MSNs was found to be accelerated at high temperature and high pH, resulting in a higher rate of silica formation. Modeling SAXS data of micelles, where a well-defined electrostatic interaction is assumed, determines the size and shape of hexadecyltrimethylammonium bromide (CTAB) micelles before and after the addition of TEOS. The results suggested that the micelle size increases and the micelle shape changes from ellipsoid to spherical, which might be attributed to the solubilization of TEOS in the hydrophobic core of CTAB micelles. A new "swelling-shrinking" mechanism is proposed. The mechanism provides new insights into understanding MSN growth for the formation of functional mesoporous materials exhibiting controlled morphologies. The SAXS analyses were correlated to the structure of CTAB micelles and chemical reaction of TEOS. This study has provided critical information to an understanding of the growth kinetics and mechanism of MSNs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A recently established means of surface functionalization of unsized carbon fibres for enhanced compatibility with epoxy resins was optimised and evaluated using interfacial shear stress measurements. Interfacial adhesion has a strong influence on the bulk mechanical properties of composite materials. In this work we report on the optimisation of our aryl diazo-grafting methodology via a series of reagent concentration studies. The fibres functionalised at each concentration are characterised physically (tensile strength, modulus, coefficient of friction, and via AFM), and chemically (XPS). The interfacial shear strength (IFSS) of all treated fibres was determined via the single fibre fragmentation test, using the Kelly-Tyson model. Large increases in IFSS for all concentrations (28-47%) relative to control fibres were observed. We show that halving the reagent concentration increased the coefficient of friction of the fibre and the interfacial shear strength of the composite while resulting in no loss of the key performance characteristics in the treated fibre.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes a non-destructive "peak parking" protocol in order to assess the axial heterogeneity of an in situ modified monolithic column for high performance liquid chromatography; a "gradient stationary phase" was designed whereby the ligand density decreases along the length of the rod in the "forward flow" configuration. The results of multi-location peak parking demonstrated a consistent increase in peak variance from the 1 cm position of the column to the 9 cm location. This increase in band broadening supported the theory of a decreasing ligand density along the length of this gradient column. This is consistent with efficiency measurements performed in both the forward and reverse flow directions, with an improved efficiency (15% increase in N m-1) in the reverse direction. These results are consistent with theoretical investigations into stationary phase gradients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Herein, a new graphene/Cu nanoparticle composite was prepared via the in situ reduction of GO in the presence of Cu nanoparticles which was then utilized as a sacrificing template for the formation of flexible and porous graphene capacitor electrodes by the dissolution of the intercalated Cu nanoparticle in a mixed solution of FeCl<inf>3inf> and HCl. The porous RGO electrode was characterized by atomic force microscopy (AFM), Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and thermogravimetric analysis (TGA). The as-prepared graphene/Cu nanoparticle composite and the pure graphene film after removal of Cu nanoparticles possessed high conductivity of 3.1 × 103 S m-1 and 436 S m-1 respectively. The porous RGO can be used as the electrode for the fabrication of supercapacitors with high gravimetric specific capacitances up to 146 F g-1, good rate capability and satisfactory electrochemical stability. This environmentally friendly and efficient approach to fabricating porous graphene nanostructures could have enormous potential applications in the field of energy storage and nanotechnology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a hypothesis and its experimental validation that simultaneous improvement in the hardness and corrosion resistance of aluminium can be achieved by the combination of suitable processing route and alloying additions. More specifically, the corrosion resistance and hardness of Al- xCr (x= 0-10 wt.%) alloys as produced via high-energy ball milling were significantly higher than pure Al and AA7075-T651. The improved properties of the Al- xCr alloys were attributed to the Cr addition and high-energy ball milling, which caused nanocrystalline structure, extended solubility of Cr in Al, and uniformly distributed fine intermetallic phases in the Al-Cr matrix.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An approach to achieving the ambitious goal of cost effectively extending the safe operation life of energy pipelines to, for instance, 100 years is the application of structural health monitoring and life prediction tools that are able to provide long-term remnant pipeline life prediction and in-situ pipeline condition monitoring. A critical step in pipeline structural health monitoring is the enhancement of technological capabilities that are required for quantifying the effects of key factors influencing buried pipeline corrosion and environmentally assisted materials degradation, and the development of condition monitoring technologies that are able to provide in-situ monitoring and site-specific warning of pipeline damage. This paper provides an overview of our current research aimed at developing new sensors for monitoring, categorising and quantifying the level and nature of external pipeline and coating damages under the combined effects of various inter-related variables and processes such as localised corrosion, coating damage and disbondment, cathodic shielding. The concept of in-situ monitoring and site-specific warning of pipeline corrosion is illustrated by a case of monitoring localised corrosion under disbonded coatings using a new corrosion monitoring probe. A basic principle that underpins the use of sensors to monitor localised corrosion has been presented: Localised corrosion and coating failure are not an accidental occurrence, it occurs as the result of fundamental thermodynamic instability of a metal exposed to a specific environment. Therefore corrosion and coating disbondment occurring on a pipeline will also occur on a sensor made of the same material and exposed to the same pipeline condition. Although the exact location of localised corrosion or coating disbondment could be difficult to pinpoint along the length of a buried pipeline, the ‘worst-case scenario’ and high risk pipeline sections and sites are predictable. Sensors can be embedded at these strategic sites to collect data that contain ‘predictor features’ signifying the occurrence of localised corrosion, CP failure, coating disbondment and degradation. Information from these sensors will enable pipeline owners to prioritise site survey and inspection operations, and to develop maintenance strategy to manage aged pipelines, rather than replace them.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

O experimento realizado avaliou, através de incubações ruminais de um volumoso misturado a diferentes concentrados, a ocorrência de influência mútua entre esses alimentos. Foi utilizado um animal Hereford fistulado no rúmen, em três períodos experimentais e foram incubados, por 24 horas, os seguintes ingredientes: farelo de soja, farelo de arroz integral, milho integral moído misturados com volumoso (feno de capim coast-cross) nas seguintes proporções de concentrado: 100, 50, 40, 30, 20 e 0%. Foi estudada a degradação da MS e da FDN das misturas, através do desaparecimento de amostra e da análise dos resíduos e amostras. Ao comparar-se as medidas obtidas com as estimadas através do cálculo proporcional das degradabilidades individuais dos ingredientes não se obteve diferença significativa entre a degradabilidade obtida e estimada da MS de nenhum dos alimentos em nenhuma das proporções A mesma comparação realizada com a FDN mostrou algumas diferenças numéricas entre as medidas observadas e estimadas nas misturas de feno + farelo de soja e feno + milho moído. No entanto, esses resultados não foram estatisticamente significativos (P>0,05) possivelmente pela alta variabilidade da técnica em relação ao pequeno numero de repetições testadas. O farelo de arroz utilizado nesse experimento apresentou características muito próximas às encontradas no feno e por isso não houve diferença significativa entre as degradabilidades obtida e estimada na mistura de farelo de arroz com o feno. A técnica “in situ”, da forma como a metodologia foi testada, não foi capaz de mostrar benefícios ou prejuízos estatisticamente significativos a degradação da MS e FDN dos alimentos misturados.