948 resultados para imultaneous localization and mapping
Resumo:
The production of object and action words can be dissociated in aphasics, yet their anatomical correlates have been difficult to distinguish in functional imaging studies. To investigate the extent to which the cortical neural networks underlying object- and action-naming processing overlap, we performed electrostimulation mapping (ESM), which is a neurosurgical mapping technique routinely used to examine language function during brain-tumor resections. Forty-one right-handed patients who had surgery for a brain tumor were asked to perform overt naming of object and action pictures under stimulation. Overall, 73 out of the 633 stimulated cortical sites (11.5%) were associated with stimulation-induced language interferences. These interference sites were very much localized (<1 cm(2) ), and showed substantial variability across individuals in their exact localization. Stimulation interfered with both object and action naming over 44 sites, whereas it specifically interfered with object naming over 19 sites and with action naming over 10 sites. Specific object-naming sites were mainly identified in Broca's area (Brodmann area 44/45) and the temporal cortex, whereas action-naming specific sites were mainly identified in the posterior midfrontal gyrus (Brodmann area 6/9) and Broca's area (P = 0.003 by the Fisher's exact test). The anatomical loci we emphasized are in line with a cortical distinction between objects and actions based on conceptual/semantic features, so the prefrontal/premotor cortex would preferentially support sensorimotor contingencies associated with actions, whereas the temporal cortex would preferentially underpin (functional) properties of objects. Hum Brain Mapp 35:429-443, 2014. © 2012 Wiley Periodicals, Inc.
Resumo:
Here we present information on the assignment of 7 genes, ACADVL, ADORA3, ATP7A, MTMR4, MYH2, HBB, TSPAN-3, and 4 common shrew microsatellites to chromosomes of the common shrew (Sorex araneus) and on the current status of its cytogenetic map. Comparative mapping data were used for the analysis of evolutionary chromosomal rearrangements in the common shrew genome.
Resumo:
Malondialdehyde (MDA) is a small, ubiquitous, and potentially toxic aldehyde that is produced in vivo by lipid oxidation and that is able to affect gene expression. Tocopherol deficiency in the vitamin E2 mutant vte2-1 of Arabidopsis thaliana leads to massive lipid oxidation and MDA accumulation shortly after germination. MDA accumulation correlates with a strong visual phenotype (growth reduction, cotyledon bleaching) and aberrant GST1 (glutathione S-transferase 1) expression. We suppressed MDA accumulation in the vte2-1 background by genetically removing tri-unsaturated fatty acids. The resulting quadruple mutant, fad3-2 fad7-2 fad8 vte2-1, did not display the visual phenotype or the aberrant GST1 expression observed in vte2-1. Moreover, cotyledon bleaching in vte2-1 was chemically phenocopied by treatment of wild-type plants with MDA. These data suggest that products of tri-unsaturated fatty acid oxidation underlie the vte2-1 seedling phenotype, including cellular toxicity and gene regulation properties. Generation of the quadruple mutant facilitated the development of an in situ fluorescence assay based on the formation of adducts of MDA with 2-thiobarbituric acid at 37 degrees C. Specificity was verified by measuring pentafluorophenylhydrazine derivatives of MDA and by liquid chromatography analysis of MDA-2-thiobarbituric acid adducts. Potentially applicable to other organisms, this method allowed the localization of MDA pools throughout the body of Arabidopsis and revealed an undiscovered pool of the compound unlikely to be derived from trienoic fatty acids in the vicinity of the root tip quiescent center.
Resumo:
Glucose-dependent insulinotropic polypeptide (GIP) is a hormone secreted by the endocrine K-cells from the duodenum that stimulates glucose-induced insulin secretion. Here, we present the molecular characterization of the human pancreatic islet GIP receptor. cDNA clones for the GIP receptor were isolated from a human pancreatic islet cDNA library. They encoded two different forms of the receptor, which differed by a 27-amino acid insertion in the COOH-terminal cytoplasmic tail. The receptor protein sequence was 81% identical to that of the rat GIP receptor. When expressed in Chinese hamster lung fibroblasts, both forms of the receptor displayed high-affinity binding for GIP (180 and 600 pmol/l). GIP binding was displaced by < 20% by 1 mumol/l glucagon, glucagon-like peptide (GLP-I)(7-36) amide, vasoactive intestinal peptide, and secretin. However exendin-4 and exendin-(9-39) at 1 mumol/l displaced binding by approximately 70 and approximately 100% at 10 mumol/l. GIP binding to both forms of the receptor induced a dose-dependent increase in intracellular cAMP levels (EC50 values of 0.6-0.8 nmol/l) but no elevation of cytoplasmic calcium concentrations. Interestingly, both exendin-4 and exendin-(9-39) were antagonists of the receptor, inhibiting GIP-induced cAMP formation by up to 60% when present at a concentration of 10 mumol/l. Finally, the physical and genetic chromosomal localization of the receptor gene was determined to be on 19q13.3, close to the ApoC2 gene. These data will help study the physiology and pathophysiology of the human GIP receptor.
Resumo:
In sentinel node (SN) biopsy, an interval SN is defined as a lymph node or group of lymph nodes located between the primary melanoma and an anatomically well-defined lymph node group directly draining the skin. As shown in previous reports, these interval SNs seem to be at the same metastatic risk as are SNs in the usual, classic areas. This study aimed to review the incidence, lymphatic anatomy, and metastatic risk of interval SNs. METHODS: SN biopsy was performed at a tertiary center by a single surgical team on a cohort of 402 consecutive patients with primary melanoma. The triple technique of localization was used-that is, lymphoscintigraphy, blue dye, and gamma-probe. Otolaryngologic melanoma and mucosal melanoma were excluded from this analysis. SNs were examined by serial sectioning and immunohistochemistry. All patients with metastatic SNs were recommended to undergo a radical selective lymph node dissection. RESULTS: The primary locations of the melanomas included the trunk (188), an upper limb (67), or a lower limb (147). Overall, 97 (24.1%) of the 402 SNs were metastatic. Interval SNs were observed in 18 patients, in all but 2 of whom classic SNs were also found. The location of the primary was truncal in 11 (61%) of the 18, upper limb in 5, and lower limb in 2. One patient with a dorsal melanoma had drainage exclusively in a cervicoscapular area that was shown on removal to contain not lymph node tissue but only a blue lymph channel without tumor cells. Apart from the interval SN, 13 patients had 1 classic SN area and 3 patients 2 classic SN areas. Of the 18 patients, 2 had at least 1 metastatic interval SN and 2 had a classic SN that was metastatic; overall, 4 (22.2%) of 18 patients were node-positive. CONCLUSION: We found that 2 of 18 interval SNs were metastatic: This study showed that preoperative lymphoscintigraphy must review all known lymphatic areas in order to exclude an interval SN.
Resumo:
5-Hydroxymethylcytosine (5hmC), a modified form of cytosine that is considered the sixth nucleobase in DNA, has been detected in mammals and is believed to play an important role in gene regulation. In this study, 5hmC modification was detected in rice by employing a dot-blot assay, and its levels was further quantified in DNA from different rice tissues using liquid chromatography-multistage mass spectrometry (LC-MS/MS/MS). The results showed large intertissue variation in 5hmC levels. The genome-wide profiles of 5hmC modification in three different rice cultivars were also obtained using a sensitive chemical labelling followed by a next-generation sequencing method. Thousands of 5hmC peaks were identified, and a comparison of the distributions of 5hmC among different rice cultivars revealed the specificity and conservation of 5hmC modification. The identified 5hmC peaks were significantly enriched in heterochromatin regions,and mainly located in transposable element (TE) genes, especially around retrotransposons. The correlation analysis of 5hmC and gene expression data revealed a close association between 5hmC and silent TEs. These findings provide a resource for plant DNA 5hmC epigenetic studies and expand our knowledge of 5hmC modification.
Resumo:
Ornamental fish culture is important as an economic activity and for biodiversity conservation as well. The species of the genus Trichogaster (Perciformes, Osphronemidae), popularly known as three-spot gourami, are among the several commercial species raised around the world. In the present work, eight specimens of Thrichogaster trichopterus from aquarium trade facilities were analyzed. The karyotype was composed of 23 pairs of subtelo/acrocentric chromosomes. Fluorescent in situ hybridization allowed identifying the 18S ribosomal gene at telomeric region on long arms of the largest acrocentric pair. On the other hand, the 5S rRNA gene is located at a proximal region on a pair of medium-sized chromosomes. Such information is extremely useful in face of the risks of introduction and the development of ornamental fish trade, once many fish species can be identified only by genetic studies.
Resumo:
The Richieri-Costa-Pereira syndrome is a rare autosomal recessive disorder characterized by short stature, Robin sequence, cleft mandible, pre/postaxial anomalies and clubfoot. of 15 families reported with this disorder 14 are from Brazil suggesting a founder effect. We studied 15 families using identity-by-descent as a hypothesis to attempt gene localization We have examined through linkage analysis 497 polymorphicmarkers and also performed direct sequencing of exons for 10 candidate genes selected on the basis of their expression in the developing mandible and limb. No evidence for allele sharing at any locus tested or mutations in candidate genes was found. Additional higher resolution mapping, new families and other candidate genes might improve future chances of gene identification. (C) 2003 Wiley-Liss, Inc.
Resumo:
Chromosomal localization of 5S rDNA and 5SHindIII repetitive sequences was carried out in several representatives of the Erythrinidae family, namely in karyomorphs A, D, and F of Hoplias malabaricus, and in H. lacerdae, Hoplerythrinusunitaeniatus and Erythrinus erythrinus. The 5S rDNA mapped interstitially in two chromosome pairs in karyomorph A and in one chromosome pair in karyomorphs D and F and in H. lacerdae. The 5SHindIII repetitive DNA mapped to the centromeric region of several chromosomes (18 to 22 chromosomes) with variations related to the different karyomorphs of H. malabaricus. on the other hand, no signal was detected in the chromosomes of H. lacerdae, H. unitaeniatus and E. erythrinus, suggesting that the 5SHindIII-DNA sequences have originated or were lost after the divergence of H. malabaricus from the other erythrinid species. The chromosome distribution of 5S rDNA and 5SHindIII-DNA sequences contributes to a better understanding of the mechanisms of karyotype differentiation among the Erythrinidae members.Copyright (c) 2007 S. Karger AG, Basel.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Mobile robots need autonomy to fulfill their tasks. Such autonomy is related whith their capacity to explorer and to recognize their navigation environments. In this context, the present work considers techniques for the classification and extraction of features from images, using artificial neural networks. This images are used in the mapping and localization system of LACE (Automation and Evolutive Computing Laboratory) mobile robot. In this direction, the robot uses a sensorial system composed by ultrasound sensors and a catadioptric vision system equipped with a camera and a conical mirror. The mapping system is composed of three modules; two of them will be presented in this paper: the classifier and the characterizer modules. Results of these modules simulations are presented in this paper.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In this study, we report the cloning and nucleotide sequence of PCR-generated 5S rDNA from the Tilapiine cichlid fish, Oreochromis niloticus. Two types of 5S rDNA were detected that differed by insertions and/or deletions and base substitutions within the non-transcribed spacer (NTS). Two 5S rDNA loci were observed by fluorescent in situ hybridization (FISH) in metaphase spreads of tilapia chromosomes. FISH using an 18S rDNA probe and silver nitrate sequential staining of 5S-FISH slides showed three 18S rDNA loci that are not syntenic to the 5S rDNA loci.
Resumo:
Prochilodus lineatus, an abundant species in the Mogi-Guaçu river basin, represents a large part of the region's fishing potential. Karyotypic analyses based on classic cytogenetic techniques have revealed the presence of 54 metasubmetacentric type chromosomes, together with the occurrence of small supernumerary chromosomes with intra and interindividual variations. This paper describes the genomic organization of two families of satellite DNA in the P. lineatus genome. The chromosomal localization these two repetitive DNA families through fluorescence in situ hybridization (FISH) demonstrated that the SATH1 satellite DNA family, composed of approximately 900 bp, was located in the pericentromeric region of a group of chromosomes of the standard complement, as well as on all the B chromosomes. The SATH2 satellite family has a monomeric unit of 441 bp and was located in the pericentromeric regions of some chromosomes of the standard complement, but was absent in the B chromosomes. Double FISH analyses showed that these two families participate jointly in the pericentromeric organization of several chromosomes of this species. The data obtained in this study support the hypothesis that the B chromosomes derive from chromosomes of the standard complement, which are carriers of the SATH1 satellite DNA.
Resumo:
Autonomous robots must be able to learn and maintain models of their environments. In this context, the present work considers techniques for the classification and extraction of features from images in joined with artificial neural networks in order to use them in the system of mapping and localization of the mobile robot of Laboratory of Automation and Evolutive Computer (LACE). To do this, the robot uses a sensorial system composed for ultrasound sensors and a catadioptric vision system formed by a camera and a conical mirror. The mapping system is composed by three modules. Two of them will be presented in this paper: the classifier and the characterizer module. The first module uses a hierarchical neural network to do the classification; the second uses techiniques of extraction of attributes of images and recognition of invariant patterns extracted from the places images set. The neural network of the classifier module is structured in two layers, reason and intuition, and is trained to classify each place explored for the robot amongst four predefine classes. The final result of the exploration is the construction of a topological map of the explored environment. Results gotten through the simulation of the both modules of the mapping system will be presented in this paper. © 2008 IEEE.