982 resultados para highly charged ions
Resumo:
In this work, a study of the nematic (N)-isotropic (I) phase transition has been made in a series of odd non-symmetric liquid crystal dimers, the alpha-(4-cyanobiphenyl-4'-yloxy)-omega-(1-pyrenimine-benzylidene-4'-oxy) alkanes, by means of accurate calorimetric and dielectric measurements. These materials are potential candidates to present the elusive biaxial nematic (N-B) phase, as they exhibit both molecular biaxiality and flexibility. According to the theory, the uniaxial nematic (N-U)-isotropic (I) phase transition is first-order in nature, whereas the N-B-I phase transition is second-order. Thus, a fine analysis of the critical behavior of the N-I phase transition would allow us to determine the presence or not of the biaxial nematic phase and understand how the molecular biaxiality and flexibility of these compounds influences the critical behavior of the N-I phase transition.
Resumo:
A new dual simultaneous detector was developed for capillary electrophoresis microchip. Confocal laser-induced fluorescence (LIF) and moveable contactless conductivity detection (MCCD) were combined together for the first time. The two detection systems shared a common detection cell and could respond simultaneously. They were mutually independent and advantageous in analyses of mixtures containing organic and inorganic ions. The confocal LIF had high sensitivity and the MCCD could move along the separation channel and detect in different positions of the channel. The detection conditions of the dual detector were optimized. Rhodamine B was used to evaluate the performance of the dual detector. The limit of detection of the confocal LIF was < 5 nM, and that of the MCCD was 0.1 mu M. The dual detector had highly sensitivity and could offer response easily, rapidly and simultaneously.
Resumo:
A new dual simultaneous detector was developed for capillary electrophoresis microchip. Confocal laser-induced fluorescence (LIF) and moveable contactless conductivity detection (MCCD) were combined together for the first time. The two detection systems shared a common detection cell and could respond simultaneously. They were mutually independent and advantageous in analyses of mixtures containing organic and inorganic ions. The confocal LIF had high sensitivity and the MCCD could move along the separation channel and detect in different positions of the channel. The detection conditions of the dual detector were optimized. Rhodamine B was used to evaluate the performance of the dual detector. The limit of detection of the confocal LIF was <5 nM, and that of the MCCD was 0.1 μM. The dual detector had highly sensitivity and could offer response easily, rapidly and simultaneously.
Resumo:
Part I
Particles are a key feature of planetary atmospheres. On Earth they represent the greatest source of uncertainty in the global energy budget. This uncertainty can be addressed by making more measurement, by improving the theoretical analysis of measurements, and by better modeling basic particle nucleation and initial particle growth within an atmosphere. This work will focus on the latter two methods of improvement.
Uncertainty in measurements is largely due to particle charging. Accurate descriptions of particle charging are challenging because one deals with particles in a gas as opposed to a vacuum, so different length scales come into play. Previous studies have considered the effects of transition between the continuum and kinetic regime and the effects of two and three body interactions within the kinetic regime. These studies, however, use questionable assumptions about the charging process which resulted in skewed observations, and bias in the proposed dynamics of aerosol particles. These assumptions affect both the ions and particles in the system. Ions are assumed to be point monopoles that have a single characteristic speed rather than follow a distribution. Particles are assumed to be perfect conductors that have up to five elementary charges on them. The effects of three body interaction, ion-molecule-particle, are also overestimated. By revising this theory so that the basic physical attributes of both ions and particles and their interactions are better represented, we are able to make more accurate predictions of particle charging in both the kinetic and continuum regimes.
The same revised theory that was used above to model ion charging can also be applied to the flux of neutral vapor phase molecules to a particle or initial cluster. Using these results we can model the vapor flux to a neutral or charged particle due to diffusion and electromagnetic interactions. In many classical theories currently applied to these models, the finite size of the molecule and the electromagnetic interaction between the molecule and particle, especially for the neutral particle case, are completely ignored, or, as is often the case for a permanent dipole vapor species, strongly underestimated. Comparing our model to these classical models we determine an “enhancement factor” to characterize how important the addition of these physical parameters and processes is to the understanding of particle nucleation and growth.
Part II
Whispering gallery mode (WGM) optical biosensors are capable of extraordinarily sensitive specific and non-specific detection of species suspended in a gas or fluid. Recent experimental results suggest that these devices may attain single-molecule sensitivity to protein solutions in the form of stepwise shifts in their resonance wavelength, \lambda_{R}, but present sensor models predict much smaller steps than were reported. This study examines the physical interaction between a WGM sensor and a molecule adsorbed to its surface, exploring assumptions made in previous efforts to model WGM sensor behavior, and describing computational schemes that model the experiments for which single protein sensitivity was reported. The resulting model is used to simulate sensor performance, within constraints imposed by the limited material property data. On this basis, we conclude that nonlinear optical effects would be needed to attain the reported sensitivity, and that, in the experiments for which extreme sensitivity was reported, a bound protein experiences optical energy fluxes too high for such effects to be ignored.
Resumo:
The model dependence inherent in hadronic calculations is one of the dominant sources of uncertainty in the theoretical prediction of the anomalous magnetic moment of the muon. In this thesis, we focus on the charged pion contribution and turn a critical eye on the models employed in the few previous calculations of $a_\mu^{\pi^+\pi^-}$. Chiral perturbation theory provides a check on these models at low energies, and we therefore calculate the charged pion contribution to light-by-light (LBL) scattering to $\mathcal{O}(p^6)$. We show that the dominant corrections to the leading order (LO) result come from two low energy constants which show up in the form factors for the $\gamma\pi\pi$ and $\gamma\gamma\pi\pi$ vertices. Comparison with the existing models reveal a potentially significant omission - none include the pion polarizability corrections associated with the $\gamma\gamma\pi\pi$ vertex. We next consider alternative models where the pion polarizability is produced through exchange of the $a_1$ axial vector meson. These have poor UV behavior, however, making them unsuited for the $a_\mu^{\pi^+\pi^-}$ calculation. We turn to a simpler form factor modeling approach, generating two distinct models which reproduce the pion polarizability corrections at low energies, have the correct QCD scaling at high energies, and generate finite contributions to $a_\mu^{\pi^+\pi^-}$. With these two models, we calculate the charged pion contribution to the anomalous magnetic moment of the muon, finding values larger than those previously reported: $a_\mu^\mathrm{I} = -1.779(4)\times10^{-10}\,,\,a_\mu^\mathrm{II} = -4.892(3)\times10^{-10}$.
Resumo:
Inelastic neutron scattering (INS) and nuclear-resonant inelastic x-ray scattering (NRIXS) were used to measure phonon spectra of FeV as a B2- ordered compound and as a bcc solid solution. Contrary to the behavior of ordering alloys studied to date, the phonons in the B2-ordered phase are softer than in the solid solution. Ordering increases the vibrational entropy, which stabilizes the ordered phase to higher temperatures. Ab initio calculations show that the number of electronic states at the Fermi level increases upon ordering, enhancing the screening between ions, and reducing the interatomic force constants. The effect of screening is larger at the V atomic sites than at the Fe atomic sites.
The phonon spectra of Au-rich alloys of fcc Au-Fe were also measured. The main effect on the vibrational entropy of alloying comes from a stiffening of the Au partial phonon density of states (DOS) with Fe concentration that increases the miscibility gap temperature. The magnitude of the effect is non- linear and it is reduced at higher Fe concentrations. Force constants were calculated for several compositions and show a local stiffening of Au–Au bonds close to Fe atoms, but Au–Au bonds that are farther away do not show this effect. Phonon DOS curves calculated from the force constants reproduced the experimental trends. The Au–Fe bond is soft and favors ordering, but a charge transfer from the Fe to the Au atoms stiffens the Au–Au bonds enough to favor unmixing. The stiffening is attributed to two main effects comparable in magnitude: an increase in electron density in the free-electron-like states, and stronger sd-hybridization.
INS and NRIXS measurements were performed at elevated temperatures on B2-ordered FeTi and NRIXS measurements were performed at high pressures. The high-pressure behavior is quasi- harmonic. The softening of the phonon DOS curves with temperature is strongly nonharmonic. Calculations of the force constants and Born-von Karman fits to the experimental data show that the bonds between second nearest neighbors (2nn) are much stiffer than those between 1nn, but fits to the high temperature data show that the former softens at a faster rate with temperature. The Fe–Fe bond softens more than the Ti–Ti bond. The unusual stiffness of the 2nn bond is explained by the calculated charge distribution, which is highly aspherical and localized preferentially in the t2g orbitals. Ab initio molecular dynamics (AIMD) simulations show a charge transfer from the t2g orbitals to the eg orbitals at elevated temperatures. The asphericity decreases linearly with temperature and is more severe at the Fe sites.
Resumo:
We propose a universal quantum computation scheme for trapped ions in thermal motion via the technique of adiabatic passage, which incorporates the advantages of both the adiabatic passage and the model of trapped ions in thermal motion. Our scheme is immune from the decoherence due to spontaneous emission from excited states as the system in our scheme evolves along a dark state. In our scheme the vibrational degrees of freedom are not required to be cooled to their ground states because they are only virtually excited. It is shown that the fidelity of the resultant gate operation is still high even when the magnitude of the effective Rabi frequency moderately deviates from the desired value.
Resumo:
This dissertation presents the results of studies of several rotationally- resolved resonance enhanced multiphoton ionization (REMPI) processes in some simple molecular systems. The objective of these studies is to quantitatively identify the underlying dynamics of this highly state-specific process which utilizes the narrow bandwidth radiation of a laser to ionize a molecule by first preparing an excited state via multiphoton absorption and subsequently ionizing that state before it can decay. Coupled with high-resolution photoelectron spectroscopy, REMPI is clearly an important probe of molecular excited states and their photoioniza tion dynamics.
A key feature of our studies is that they are carried out using accurate Hartree-Fock orbitals to describe the photoelectron orbitals of the molecular ions. The use of such photoelectron orbitals is important in rotationally-resolved studies where the angular momentum coupling in the photoelectron orbital plays a significant role in the photoionization dynamics. In these studies the Hartree-Fock molecular molecular photoelectron orbitals are obtained by numerical solution of a Lippmann-Schwinger integral equation.
Studies reported here include investigations of (i) ionic rotational branching ratios and their energy dependence for REMPI via the A^2Σ^+(3sσ) and D^2Σ^+(3pσ)states of NO, (ii) the influence of angular momentum constraints on branching ratios at low photoelectron energies for REMPI via low-J levels of the resonant intermediate state, (iii) the strong dependence of photoelectron angular distributions on final ionic rotational state and on the alignment in REMPI of the A^2Σ^+ state of NO, (iv) vibrational state dependence of ionic rotational branching ratios arising from rapid orbital evolution in resonant states (E'^2Σ^+(3pσ) of CH), (v) the influence of rovibronic interactions on the rotational branching ratios seen in REMPI via the D^2Σ^+(3pσ) state of NO, and (vi) effects of laser intensity on the photoionization dynamics of REMPI.
Resumo:
The interaction of a petawatt laser with a small solid-density plasma bunch is studied by particle-in-cell simulation. It is shown that when irradiated by a laser of intensity >10(21) W/cm(2), a dense plasma bunch of micrometer size can be efficiently accelerated. The kinetic energy of the ions in the high-density region of the plasma bunch can exceed ten MeV at a density in the 10(23)-cm(-3) level. Having a flux density orders of magnitude higher than that of the traditional charged-particle pulses, the laser-accelerated plasma bunch can have a wide range of applications. In particular, such a dense energetic plasma bunch impinging on the compressed fuel in inertial fusion can significantly enhance the nuclear-reaction cross section and is thus a promising alternative for fast ignition.
Resumo:
The core-level energy shifts observed using X-ray photoelectron spectroscopy (XPS) have been used to determine the band bending at Si(111) surfaces terminated with Si-Br, Si-H, and Si-CH3 groups, respectively. The surface termination influenced the band bending, with the Si 2p3/2 binding energy affected more by the surface chemistry than by the dopant type. The highest binding energies were measured on Si(111)-Br (whose Fermi level was positioned near the conduction band at the surface), followed by Si(111)-H, followed by Si(111)-CH3 (whose Fermi level was positioned near mid-gap at the surface). Si(111)-CH3 surfaces exposed to Br2(g) yielded the lowest binding energies, with the Fermi level positioned between mid-gap and the valence band. The Fermi level position of Br2(g)-exposed Si(111)-CH3 was consistent with the presence of negatively charged bromine-containing ions on such surfaces. The binding energies of all of the species detected on the surface (C, O, Br) shifted with the band bending, illustrating the importance of isolating the effects of band bending when measuring chemical shifts on semiconductor surfaces. The influence of band bending was confirmed by surface photovoltage (SPV) measurements, which showed that the core levels shifted toward their flat-band values upon illumination. Where applicable, the contribution from the X-ray source to the SPV was isolated and quantified. Work functions were measured by ultraviolet photoelectron spectroscopy (UPS), allowing for calculation of the sign and magnitude of the surface dipole in such systems. The values of the surface dipoles were in good agreement with previous measurements as well as with electronegativity considerations. The binding energies of the adventitious carbon signals were affected by band bending as well as by the surface dipole. A model of band bending in which charged surface states are located exterior to the surface dipole is consistent with the XPS and UPS behavior of the chemically functionalized Si(111) surfaces investigated herein.