957 resultados para high solids content
Resumo:
OBJECTIVE Increasing evidence indicates that the Fas/Fas ligand interaction is involved in atherogenesis. We sought to analyze soluble Fas (sFas) and soluble Fas ligand (sFasL) concentrations in subjects at high cardiovascular risk and their modulation by atorvastatin treatment. METHODS AND RESULTS ACTFAST was a 12-week, prospective, multicenter, open-label trial which enrolled subjects (statin-free or statin-treated at baseline) with coronary heart disease (CHD), CHD-equivalent, or 10-year CHD risk > 20%. Subjects with LDL-C between 100 to 220 mg/dL (2.6 to 5.7 mmol/L) and triglycerides < or = 600 mg/dL (6.8 mmol/L) were assigned to a starting dose of atorvastatin (10 to 80 mg/d) based on LDL-C at screening. Of the 2117 subjects enrolled in ACTFAST, AIM sub-study included the 1078 statin-free patients. At study end, 85% of these subjects reached LDL-C target. Mean sFas levels were increased and sFasL were reduced in subjects at high cardiovascular risk compared with healthy subjects. Atorvastatin reduced sFas in the whole population as well as in patients with metabolic syndrome or diabetes. Minimal changes were observed in sFasL. CONCLUSIONS sFas concentrations are increased and sFasL are decreased in subjects at high cardiovascular risk, suggesting that these proteins may be novel markers of vascular injury. Atorvastatin reduces sFas, indicating that short-term treatment with atorvastatin exhibits antiinflammatory effects in these subjects.
Resumo:
Obesity is associated with a low-grade chronic inflammation state. As a consequence, adipose tissue expresses pro-inflammatory cytokines that propagate inflammatory responses systemically elsewhere, promoting whole-body insulin resistance and consequential islet β-cell exhaustation. Thus, insulin resistance is considered the early stage of type 2 diabetes. However, there is evidence of obese individuals that never develop diabetes indicating that the mechanisms governing the association between the increase of inflammatory factors and type 2 diabetes are much more complex and deserve further investigation. We studied for the first time the differences in insulin signalling and inflammatory pathways in blood and visceral adipose tissue (VAT) of 20 lean healthy donors and 40 equal morbidly obese (MO) patients classified in high insulin resistance (high IR) degree and diabetes state. We studied the changes in proinflammatory markers and lipid content from serum; macrophage infiltration, mRNA expression of inflammatory cytokines and transcription factors, activation of kinases involved in inflammation and expression of insulin signalling molecules in VAT. VAT comparison of these experimental groups revealed that type 2 diabetic-MO subjects exhibit the same pro-inflammatory profile than the high IR-MO patients, characterized by elevated levels of IL-1β, IL-6, TNFα, JNK1/2, ERK1/2, STAT3 and NFκB. Our work rules out the assumption that the inflammation should be increased in obese people with type 2 diabetes compared to high IR obese. These findings indicate that some mechanisms, other than systemic and VAT inflammation must be involved in the development of type 2 diabetes in obesity.
Resumo:
BACKGROUND Granulocyte colony-stimulating factors (G-CSFs) have been shown to help prevent febrile neutropenia in certain subgroups of cancer patients undergoing chemotherapy, but their role in treating febrile neutropenia is controversial. The purpose of our study was to evaluate-in a prospective multicenter randomized clinical trial-the efficacy of adding G-CSF to broad-spectrum antibiotic treatment of patients with solid tumors and high-risk febrile neutropenia. METHODS A total of 210 patients with solid tumors treated with conventional-dose chemotherapy who presented with fever and grade IV neutropenia were considered to be eligible for the trial. They met at least one of the following high-risk criteria: profound neutropenia (absolute neutrophil count <100/mm(3)), short latency from previous chemotherapy cycle (<10 days), sepsis or clinically documented infection at presentation, severe comorbidity, performance status of 3-4 (Eastern Cooperative Oncology Group scale), or prior inpatient status. Eligible patients were randomly assigned to receive the antibiotics ceftazidime and amikacin, with or without G-CSF (5 microg/kg per day). The primary study end point was the duration of hospitalization. All P values were two-sided. RESULTS Patients randomly assigned to receive G-CSF had a significantly shorter duration of grade IV neutropenia (median, 2 days versus 3 days; P = 0.0004), antibiotic therapy (median, 5 days versus 6 days; P = 0.013), and hospital stay (median, 5 days versus 7 days; P = 0.015) than patients in the control arm. The incidence of serious medical complications not present at the initial clinical evaluation was 10% in the G-CSF group and 17% in the control group (P = 0.12), including five deaths in each study arm. The median cost of hospital stay and the median overall cost per patient admission were reduced by 17% (P = 0.01) and by 11% (P = 0.07), respectively, in the G-CSF arm compared with the control arm. CONCLUSIONS Adding G-CSF to antibiotic therapy shortens the duration of neutropenia, reduces the duration of antibiotic therapy and hospitalization, and decreases hospital costs in patients with high-risk febrile neutropenia.
Resumo:
OBJECTIVES: To assess the extent to which stage at diagnosis and adherence to treatment guidelines may explain the persistent differences in colorectal cancer survival between the USA and Europe. DESIGN: A high-resolution study using detailed clinical data on Dukes' stage, diagnostic procedures, treatment and follow-up, collected directly from medical records by trained abstractors under a single protocol, with standardised quality control and central statistical analysis. SETTING AND PARTICIPANTS: 21 population-based registries in seven US states and nine European countries provided data for random samples comprising 12 523 adults (15-99 years) diagnosed with colorectal cancer during 1996-1998. OUTCOME MEASURES: Logistic regression models were used to compare adherence to 'standard care' in the USA and Europe. Net survival and excess risk of death were estimated with flexible parametric models. RESULTS: The proportion of Dukes' A and B tumours was similar in the USA and Europe, while that of Dukes' C was more frequent in the USA (38% vs 21%) and of Dukes' D more frequent in Europe (22% vs 10%). Resection with curative intent was more frequent in the USA (85% vs 75%). Elderly patients (75-99 years) were 70-90% less likely to receive radiotherapy and chemotherapy. Age-standardised 5-year net survival was similar in the USA (58%) and Northern and Western Europe (54-56%) and lowest in Eastern Europe (42%). The mean excess hazard up to 5 years after diagnosis was highest in Eastern Europe, especially among elderly patients and those with Dukes' D tumours. CONCLUSIONS: The wide differences in colorectal cancer survival between Europe and the USA in the late 1990s are probably attributable to earlier stage and more extensive use of surgery and adjuvant treatment in the USA. Elderly patients with colorectal cancer received surgery, chemotherapy or radiotherapy less often than younger patients, despite evidence that they could also have benefited.
Resumo:
The health benefits associated with the consumption of polyphenol-rich foods have been studied in depth, however, the full mechanism of action remains unknown. One of the proposed mechanisms is through microbiota interaction. In the present study, we aimed to explore the relationship between changes in fecal microbiota and changes in urinary phenolic metabolites after wine interventions. Nine participants followed a randomized, crossover, controlled interventional trial. After the washout period, they received red wine, dealcoholized red wine or gin for 20 days each. Polyphenol metabolites (n > 60) in urine were identified and quantified by UPLC-MS/MS and the microbial content of fecal samples was quantified by real-time quantitative PCR. Interventions with both red wine and dealcoholized red wine increased the fecal concentration of Bifidobacterium, Enterococcus and Eggerthella lenta, compared to gin intervention and baseline. When participants were categorized in tertiles of changes in fecal bacteria, those in the highest tertile of Bifidobacteria had higher urinary concentration changes in syringic acid, p-coumaric acid, 4-hydroxybenzoic acid and homovanillic acid (all anthocyanin metabolites) than those in tertile 1 (P < 0.05, all). In addition, changes of Bifidobacteria correlated positively with changes of these metabolites (r = 0.5-0.7, P < 0.05, all). Finally, the 68.5% changes in Bifidobacteria can be predicted by syringic acid and 4-hydroxybenzoic acid changes. This study confirms the important role of polyphenols as bacterial substrates and their modulatory capacity as an important field in the research of new products with prebiotic and probiotic characteristics for the food industry.
Resumo:
It is currently suspected that sugar overconsumption, and more specifically fructose, may promote the development of obesity and of several cardio-metabolic disorders. However, environmental factors, such as fish oil and dietary proteins, may prevent some deleterious effects of fructose. The aim of this thesis was to identify potential environmental factors that may modulate the metabolic effects of fructose. The first study was designed to evaluate the impact of endurance exercise in healthy young men fed a high-fructose, isocaloric diet. Fructose-induced effects on lipid profile were totally prevented by endurance exercise and may be explained by an enhanced clearance of TRL-TG and the inhibition of de novo lipogenesis. As energy intake was adjusted to energy requirement, we can conclude that exercise acts on fructose metabolism independently of energy imbalance. The second study aimed at determining whether coffee and more specifically chlorogenic acid consumption may prevent fructose-induced intrahepatic lipids accumulation, hypertriglyceridemia and hepatic insulin resistance, through a stimulation of lipid oxidation. Coffee did not prevent the fructose-induced increase in IHCL or plasma TG. Interestingly, the three coffees tested prevented the decrease in hepatic insulin sensitivity, independently of their content in caffeine or chlorogenic acid. Finally, in the third study, we evaluated the effect of essential amino acid supplementation on the increase of hepatic lipids induced by a high-fructose diet. This intervention slightly decreased IHCL concentration. The exact mechanisms remain unidentified but may involve an increased secretion of VLDL-TG. In conclusion, the environmental factors evaluated allow to prevent some of the deleterious effects of fructose and suggest that recommendations on fructose consumption should also take into account environmental factors.
Resumo:
The effect of diet composition [high-carbohydrate, low-fat (HC) and high-fat, low-carbohydrate (HF) diets] on macronutrient intakes and nutrient balances was investigated in young men of normal body weight. Eleven subjects were studied on two occasions for 48 h in a whole-body indirect calorimeter in a crossover design. Subjects selected their meals from a list containing a large variety of common food, which had a food quotient > 0.85 for the HC diet and < 0.85 for the HF diet. The average ad libitum intake was 14.41 +/- 0.85 MJ/d (67%, 18%, and 15% of energy as carbohydrate, fat, and protein, respectively) with the HC diet and 18.25 +/- 0.90 MJ/d (26%, 61%, and 13% of energy as carbohydrate, fat, and protein, respectively) with the HF diet. Total energy expenditure was not significantly influenced by diet composition: 10.46 +/- 0.27 and 10.97 +/- 0.22 MJ/d for the HC and HF diets, respectively. During the 2 test days, cumulative carbohydrate storage was 418 +/- 72 and 205 +/- 47 g, and fat balance was 29 +/- 17 and 291 +/- 29 g with the HC and HF diets, respectively. Only the HF diet induced a significantly positive fat balance. These results emphasize the important role of the dietary fat content in body fat storage.
Resumo:
The Hamersley province of northwest Australia is one of the world's premier iron ore regions with high-grade martite-microplaty hematite iron ore deposits mostly hosted within banded iron formation (BIF) sequences of the Brockman Iron Formations of the Hamersley Group. These high-grade iron ores contain between 60 and 68 wt percent Fe, and formed by the multistage interaction of hydrothermal fluids with the host BIF formation. The oxygen isotope compositions of magnetite and hematite from BIF, hydrothermal alteration assemblages, and high-grade iron Ore were analyzed from the Mount Tom Price, Paraburdoo, and Charmar iron ore deposits. The delta(18)O values of magnetite and hematite from hydrothermal alteration assemblages and high-grade iron ore range from -9.0 to -2.9 per mil, a depletion of 5 to 15 per mil relative to the host BIF. The delta(18)O values are spatially controlled by faults within the deposits, a response to higher fluid flux and larger influence the isotopic compositions by the hydrothermal fluids. The oxygen isotope composition of hydrothermal fluids (delta(18)O(fluid)) indicates that the decrease in the (18)O content of iron oxides was due to the interaction of both basinal brines and meteoric fluids with the original BIF. Late-stage talc-bearing ore at the Mount Tom Price deposit formed in the presence of a pulse of delta(18)O-enriched basinal brine, indicating that hydrothermal fluids may have repeatedly interacted with the BIFs during the Paleoproterozoic.
Resumo:
Arbuscular mycorrhizal fungi (AMF) are ecologically important root symbionts of most terrestrial plants. Ecological studies of AMF have concentrated on differences between species; largely assuming little variability within AMF species. Although AMF are clonal, they have evolved to contain a surprisingly high within-species genetic variability, and genetically different nuclei can coexist within individual spores. These traits could potentially lead to within-population genetic variation, causing differences in physiology and symbiotic function in AMF populations, a consequence that has been largely neglected. We found highly significant genetic and phenotypic variation among isolates of a population of Glomus intraradices but relatively low total observed genetic diversity. Because we maintained the isolated population in a constant environment, phenotypic variation can be considered as variation in quantitative genetic traits. In view of the large genetic differences among isolates by randomly sampling two individual spores, <50% of the total observed population genetic diversity is represented. Adding an isolate from a distant population did not increase total observed genetic diversity. Genetic variation exceeded variation in quantitative genetic traits, indicating that selection acted on the population to retain similar traits, which might be because of the multigenomic nature of AMF, where considerable genetic redundancy could buffer the effects of changes in the genetic content of phenotypic traits. These results have direct implications for ecological research and for studying AMF genes, improving commercial AMF inoculum, and understanding evolutionary mechanisms in multigenomic organisms.
Resumo:
It is well known that visceral adipose tissue (VAT) is associated with insulin resistance (IR). Considerable debate remains concerning the potential positive effect of thigh subcutaneous adipose tissue (TSAT). Our objective was to observe whether VAT and TSAT are opposite, synergistic or additive for both peripheral and hepatic IR. Fifty-two volunteers (21 male/31 female) between 30 and 75 years old were recruited from the general population. All subjects were sedentary overweight or obese (mean BMI 33.0 ± 3.4 kg/m(2)). Insulin sensitivity was determined by a 4-h hyperinsulinemic-euglycemic clamp with stable isotope tracer dilution. Total body fat and lean body mass were determined by dual X-ray absorptiometry. Abdominal and mid-thigh adiposity was determined by computed tomography. VAT was negatively associated with peripheral insulin sensitivity, while TSAT, in contrast, was positively associated with peripheral insulin sensitivity. Subjects with a combination of low VAT and high TSAT had the highest insulin sensitivity, subjects with a combination of high VAT and low TSAT were the most insulin resistant. These associations remained significant after adjusting for age and gender. These data confirm that visceral excess abdominal adiposity is associated with IR across a range of middle-age to older men and women, and further suggest that higher thigh subcutaneous fat is favorably associated with better insulin sensitivity. This strongly suggests that these two distinct fat distribution phenotypes should both be considered in IR as important determinants of cardiometabolic risk.
Resumo:
Content outline used during the Improving Transition Outcomes Resource Mapping Workshops
Resumo:
Choosing what to eat is a complex activity for humans. Determining a food's pleasantness requires us to combine information about what is available at a given time with knowledge of the food's palatability, texture, fat content, and other nutritional information. It has been suggested that humans may have an implicit knowledge of a food's fat content based on its appearance; Toepel et al. (Neuroimage 44:967-974, 2009) reported visual-evoked potential modulations after participants viewed images of high-energy, high-fat food (HF), as compared to viewing low-fat food (LF). In the present study, we investigated whether there are any immediate behavioural consequences of these modulations for human performance. HF, LF, or non-food (NF) images were used to exogenously direct participants' attention to either the left or the right. Next, participants made speeded elevation discrimination responses (up vs. down) to visual targets presented either above or below the midline (and at one of three stimulus onset asynchronies: 150, 300, or 450 ms). Participants responded significantly more rapidly following the presentation of a HF image than following the presentation of either LF or NF images, despite the fact that the identity of the images was entirely task-irrelevant. Similar results were found when comparing response speeds following images of high-carbohydrate (HC) food items to low-carbohydrate (LC) food items. These results support the view that people rapidly process (i.e. within a few hundred milliseconds) the fat/carbohydrate/energy value or, perhaps more generally, the pleasantness of food. Potentially as a result of HF/HC food items being more pleasant and thus having a higher incentive value, it seems as though seeing these foods results in a response readiness, or an overall alerting effect, in the human brain.
Resumo:
Protein content of leaf-cutting ant queens before the nuptial flight and during the post-claustral phase. This study evaluated the crude protein content of queens of Atta sexdens before the nuptial flight and after the claustral phase in laboratory and field colonies. The hypothesis was that protein is used for survival of the queen and for early colony growth during the claustral phase. Additionally, the nest morphology, live biomass and adult population of field colonies were evaluated. Crude protein was determined by digestion of the organic material with sulfuric acid at high temperatures. The mean crude protein content was 123.23 ± 11.20 mg for females before the nuptial flight and 70.44 ± 12.21 mg for laboratory-reared queens after the claustral phase. The post-claustral crude protein content of field-collected queen was 55.90 ± 9.18 mg. With respect to the loss of crude protein as a function of duration of the claustral phase, laboratory-reared queens lost 52.79 mg and field-collected queens lost 67.33 mg compared to females before the nuptial flight. A positive linear correlation was observed between the weight of field-collected queens (256.4 ± 36.3 mg) and colony biomass (13.02 ± 9.12 g), but there was no correlation between biomass and nest depth (13.11 ± 3.82 cm). As expected, the present results support the hypothesis that protein is used for survival of the queen and for early colony growth, as demonstrated by the reduction in crude protein content as a function of duration of the claustral phase. To our knowledge, this is the first study to provide data of the dynamics of protein reserves in leaf-cutting ant queens during the claustral phase.
Resumo:
The molecular mechanisms regulating the initial uptake of inorganic sulfate in plants are still largely unknown. The current model for the regulation of sulfate uptake and assimilation attributes positive and negative regulatory roles to O-acetyl-serine (O-acetyl-Ser) and glutathione, respectively. This model seems to suffer from exceptions and it has not yet been clearly validated whether intracellular O-acetyl-Ser and glutathione levels have impacts on regulation. The transcript level of the two high-affinity sulfate transporters SULTR1.1 and SULTR1.2 responsible for sulfate uptake from the soil solution was compared to the intracellular contents of O-acetyl-Ser, glutathione, and sulfate in roots of plants submitted to a wide diversity of experimental conditions. SULTR1.1 and SULTR1.2 were differentially expressed and neither of the genes was regulated in accordance with the current model. The SULTR1.1 transcript level was mainly altered in response to the sulfur-related treatments. Split-root experiments show that the expression of SULTR1.1 is locally regulated in response to sulfate starvation. In contrast, accumulation of SULTR1.2 transcripts appeared to be mainly related to metabolic demand and is controlled by photoperiod. On the basis of the new molecular insights provided in this study, we suggest that the expression of the two transporters depends on different regulatory networks. We hypothesize that interplay between SULTR1.1 and SULTR1.2 transporters could be an important mechanism to regulate sulfate content in the roots
Resumo:
Silver has been demonstrated to be a powerful cationization agent in mass spectrometry (MS) for various olefinic species such as cholesterol and fatty acids. This work explores the utility of metallic silver sputtering on tissue sections for high resolution imaging mass spectrometry (IMS) of olefins by laser desorption ionization (LDI). For this purpose, sputtered silver coating thickness was optimized on an assorted selection of mouse and rat tissues including brain, kidney, liver, and testis. For mouse brain tissue section, the thickness was adjusted to 23 ± 2 nm of silver to prevent ion suppression effects associated with a higher cholesterol and lipid content. On all other tissues, a thickness of at 16 ± 2 nm provided the best desorption/ionization efficiency. Characterization of the species by MS/MS showed a wide variety of olefinic compounds allowing the IMS of different lipid classes including cholesterol, arachidonic acid, docosahexaenoic acid, and triacylglyceride 52:3. A range of spatial resolutions for IMS were investigated from 150 μm down to the high resolution cellular range at 5 μm. The applicability of direct on-tissue silver sputtering to LDI-IMS of cholesterol and other olefinic compounds presents a novel approach to improve the amount of information that can be obtained from tissue sections. This IMS strategy is thus of interest for providing new biological insights on the role of cholesterol and other olefins in physiological pathways or disease.