957 resultados para hierarchical linear modeling
Resumo:
Magdeburg, Univ., Fak. für Maschinenbau, Diss., 2014
Population balance modeling of influenza A virus replication in MDCK cells during vaccine production
Resumo:
Magdeburg, Univ., Fak. für Elektrotechnik und Informationstechnik, Diss., 2015
Resumo:
Magdeburg, Univ., Fak. für Informatik, Diss., 2015
Resumo:
Magdeburg, Univ., Fak. für Mathematik, Diss., 2015
Resumo:
Otto-von-Guericke-Universität Magdeburg, Fakultät für Verfahrens- und Systemtechnik, Univ., Dissertation, 2015
Resumo:
Otto-von-Guericke-Universität Magdeburg, Fakultät für Mathematik, Univ., Dissertation, 2015
Resumo:
We consider linear stochastic differential-algebraic equations with constant coefficients and additive white noise. Due to the nature of this class of equations, the solution must be defined as a generalised process (in the sense of Dawson and Fernique). We provide sufficient conditions for the law of the variables of the solution process to be absolutely continuous with respect to Lebesgue measure.
Resumo:
We explore the determinants of usage of six different types of health care services, using the Medical Expenditure Panel Survey data, years 1996-2000. We apply a number of models for univariate count data, including semiparametric, semi-nonparametric and finite mixture models. We find that the complexity of the model that is required to fit the data well depends upon the way in which the data is pooled across sexes and over time, and upon the characteristics of the usage measure. Pooling across time and sexes is almost always favored, but when more heterogeneous data is pooled it is often the case that a more complex statistical model is required.
Resumo:
We review recent likelihood-based approaches to modeling demand for medical care. A semi-nonparametric model along the lines of Cameron and Johansson's Poisson polynomial model, but using a negative binomial baseline model, is introduced. We apply these models, as well a semiparametric Poisson, hurdle semiparametric Poisson, and finite mixtures of negative binomial models to six measures of health care usage taken from the Medical Expenditure Panel survey. We conclude that most of the models lead to statistically similar results, both in terms of information criteria and conditional and unconditional prediction. This suggests that applied researchers may not need to be overly concerned with the choice of which of these models they use to analyze data on health care demand.
Resumo:
We consider multidimensional backward stochastic differential equations (BSDEs). We prove the existence and uniqueness of solutions when the coefficient grow super-linearly, and moreover, can be neither locally Lipschitz in the variable y nor in the variable z. This is done with super-linear growth coefficient and a p-integrable terminal condition (p & 1). As application, we establish the existence and uniqueness of solutions to degenerate semilinear PDEs with superlinear growth generator and an Lp-terminal data, p & 1. Our result cover, for instance, the case of PDEs with logarithmic nonlinearities.
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
We extend Floquet theory for reducing nonlinear periodic difference systems to autonomous ones (actually linear) by using normal form theory.
Resumo:
We show how to calibrate CES production and utility functions when indirect taxation affecting inputs and consumption is present. These calibrated functions can then be used in computable general equilibrium models. Taxation modifies the standard calibration procedures since any taxed good has two associated prices and a choice of reference value units has to be made. We also provide an example of computer code to solve the calibration of CES utilities under two alternate normalizations. To our knowledge, this paper fills a methodological gap in the CGE literature.
Resumo:
L’objectiu d’aquest projecte que consisteix a elaborar un algoritme d’optimització que permeti, mitjançant un ajust de dades per mínims quadrats, la extracció dels paràmetres del circuit equivalent que composen el model teòric d’un ressonador FBAR, a partir de les mesures dels paràmetres S. Per a dur a terme aquest treball, es desenvolupa en primer lloc tota la teoria necessària de ressonadors FBAR. Començant pel funcionament i l’estructura, i mostrant especial interès en el modelat d’aquests ressonadors mitjançant els models de Mason, Butterworth Van-Dyke i BVD Modificat. En segon terme, s’estudia la teoria sobre optimització i programació No-Lineal. Un cop s’ha exposat la teoria, es procedeix a la descripció de l’algoritme implementat. Aquest algoritme utilitza una estratègia de múltiples passos que agilitzen l'extracció dels paràmetres del ressonador.