963 resultados para heat load index


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The analysis of steady laminar forced convection boundary layer of power-law non-Newtonian fluids on a continuously moving cylinder with the surface maintained at a uniform temperature or uniform heat flux is presented. Of interest were the effects of power-law viscosity index, transverse curvature, generalized Prandtl number and streamwise coordinate on the local Nusselt number as well as on the velocity and temperature profiles. The two thermal boundary conditions yield quite similar results. Comparison of the calculated results with available series expansion solutions for a Newtonian fluid shows a very good performance of the present numerical procedure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Analytical and numerical solutions of a general problem related to the radially symmetric inward spherical solidification of a superheated melt have been studied in this paper. In the radiation-convection type boundary conditions, the heat transfer coefficient has been taken as time dependent which could be infinite, at time,t=0. This is necessary, for the initiation of instantaneous solidification of superheated melt, over its surface. The analytical solution consists of employing suitable fictitious initial temperatures and fictitious extensions of the original region occupied by the melt. The numerical solution consists of finite difference scheme in which the grid points move with the freezing front. The numerical scheme can handle with ease the density changes in the solid and liquid states and the shrinkage or expansions of volumes due to density changes. In the numerical results, obtained for the moving boundary and temperatures, the effects of several parameters such as latent heat, Boltzmann constant, density ratios, heat transfer coefficients, etc. have been shown. The correctness of numerical results has also been checked by satisfying the integral heat balance at every timestep.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hydraircooling is a technique used for precooling food products. In this technique chilled water is sprayed over the food products while cold unsaturated air is blown over them. Hydraircooling combines the advantages of both air- and hydrocooling. The present study is concerned with the analysis of bulk hydraircooling as it occurs in a package filled with several layers of spherical food products with chilled water sprayed from the top and cold unsaturated air blown from the bottom. A mathematical model is developed to describe the hydrodynamics and simultaneous heat and mass transfer occurring inside the package. The non-dimensional governing equations are solved using the finite difference numerical methods. The results are presented in the form of time-temperature charts. A correlation is obtained to calculate the process time in terms of the process parameters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The permeability index Ck, similar to the compression index, is the slope of the void ratio – coefficient of permeability relationship. Literature shows that, in general, for sensitive clays it can be related to initial void ratio by Ck = 0.5e0. The possibility of obtaining such a relationship for Cochin marine clays in terms of liquid limit void ratio is indicated in this paper. Analysis of permeability behaviour of Cochin marine clays and the test results available in published literature using generalized state parameter approach show that, in principle, these forms of equations for the permeability index are tenable, even though they were obtained based on experimental observation alone.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A review of the research work that has been carried out thus far relating the casting and heat treatment variables to the structure and mechanical properties of Al–7Si–Mg (wt-%) is presented here. Although specifications recommend a wide range of magnesium contents and a fairly high content of iron, a narrow range of magnesium contents, closer to either the upper or lower specified limits depending on the properties desired, and a low iron content will have to be maintained to obtain optimum and consistent mechanical properties. A few studies have revealed that the modification of eutectic silicon slightly increases ductility and fracture toughness and also that the effect of modification is predominant at low iron content. Generally, higher solidification rates give superior mechanical properties. Delayed aging (the time elapsed between quenching and artificial aging during precipitation hardening) severely affects the strength of the alloy. The mechanism of delayed aging can be explained on the basis of Pashley's kinetic model. It has been reported that certain trace additions (cadmium, indium, tin, etc.) neutralise the detrimental effect of delayed aging. In particular, it should be noted that delayed aging is not mentioned in any of the specifications. With reference to the mechanism by which trace additions neutralise the detrimental effect of delayed aging, various hypotheses have been postulated, of which impurity–vacancy interaction appears to be the most widely accepted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Context. Turbulent fluxes of angular momentum and heat due to rotationally affected convection play a key role in determining differential rotation of stars. Aims. We compute turbulent angular momentum and heat transport as functions of the rotation rate from stratified convection. We compare results from spherical and Cartesian models in the same parameter regime in order to study whether restricted geometry introduces artefacts into the results. Methods. We employ direct numerical simulations of turbulent convection in spherical and Cartesian geometries. In order to alleviate the computational cost in the spherical runs and to reach as high spatial resolution as possible, we model only parts of the latitude and longitude. The rotational influence, measured by the Coriolis number or inverse Rossby number, is varied from zero to roughly seven, which is the regime that is likely to be realised in the solar convection zone. Cartesian simulations are performed in overlapping parameter regimes. Results. For slow rotation we find that the radial and latitudinal turbulent angular momentum fluxes are directed inward and equatorward, respectively. In the rapid rotation regime the radial flux changes sign in accordance with earlier numerical results, but in contradiction with theory. The latitudinal flux remains mostly equatorward and develops a maximum close to the equator. In Cartesian simulations this peak can be explained by the strong 'banana cells'. Their effect in the spherical case does not appear to be as large. The latitudinal heat flux is mostly equatorward for slow rotation but changes sign for rapid rotation. Longitudinal heat flux is always in the retrograde direction. The rotation profiles vary from anti-solar (slow equator) for slow and intermediate rotation to solar-like (fast equator) for rapid rotation. The solar-like profiles are dominated by the Taylor-Proudman balance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tiivistelmä: Valuma-alueen vaikutus fosforin ja typen hajakuormitukseen.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The specific heat Cp of glassy Ge20Se80−xBix (0 ≤ × ≤ 12) samples is investigated. The Cp at 323K and the ΔCp at glass transition temperature Tg1 show anomalous features around x = 8 at.%, where p−n conduction type inversion also take place. These features are discussed in the light of Phillips model of phase separation in these glasses at the microscopic level.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Load-deflection curves for a notched beam under three-point load are determined using the Fictitious Crack Model (FCM) and Blunt Crack Model (BCM). Two values of fracture energy GF are used in this analysis: (i) GF obtained from the size effect law and (ii) GF obtained independently of the size effect. The predicted load-deflection diagrams are compared with the experimental ones obtained for the beams tested by Jenq and Shah. In addition, the values of maximum load (Pmax) obtained by the analyses are compared with the experimental ones for beams tested by Jenq and Shah and by Bažant and Pfeiffer. The results indicate that the descending portion of the load-deflection curve is very sensitive to the GF value used.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Unsteady laminar mixed convection flow (combined free and forced convection flow) along a vertical slender cylinder embedded in a porous medium under the combined buoyancy effect of thermal and species diffusion has been studied. The effect of the permeability of the medium as well as the magnetic field has been included in the analysis. The partial differential equations with three independent variables governing the flow have been solved numerically using a implicit finite difference scheme in combination with the quasilinearization technique. Computations have been carried out for accelerating, decelerating and oscillatory free stream velocity distributions. The effects of the permeability of the medium, buoyancy forces, transverse curvature and magnetic field on skin friction, heat transfer and mass transfer have been studied. It is found that the effect of free stream velocity distribution is more pronounced on the skin friction than on the heat and mass transfer. The permeability and magnetic parameters increase the skin friction, but reduce the heat and mass transfer. The skin friction, heat transfer and mass transfer are enhanced due to the buoyancy forces and curvature parameter. The heat transfer is strongly dependent on the viscous dissipation parameter and the Prandtl number, and the mass transfer on the Schmidt number. Untersucht wurde die instationäre laminare Mischkonvektion längs eines vertikalen, in einem porösen Medium eingebetteten Zylinders unter kombinierten Auftriebseffekten von thermischer und spezieller Diffusion. Der Einfluß der Permeabilität des Mediums sowie des magnetischen Feldes wurden in die Betrachtung einbezogen. Die partiellen Differentialgleichungen mit drei unabhängigen Variablen, welche die Strömung beschreiben, wurde numerisch anhand des Schemas der endlichen Differenzen in Verbindung mit der Technik der Quasilinearisation gelöst. Berechnungen für die beschleunigte, verzögerte und oszillierende Geschwindigkeitsverteilung der freien Strömung sind durchgeführt worden. Untersucht wurden ebenfalls die Effekte der Permeabilität des Mediums, der Auftriebskräfte, der transversalen Krümmung, des magnetischen Feldes auf die Oberflächenreibung sowie die Wärmeund Stoffübertragung. Es wurde festgestellt, daß die Geschwindigkeit mehr Einfluß auf die Oberflächenreibung als auf die Wärmeund Stoffübertragung hat. Die Oberflächenreibung sowie die Wärme- und Stoffübertragung werden durch die Auftriebskräfte und die Krümmungsparameter verbessert. Die Wärmeübertragung ist stark abhängig von den Parametern der viskosen Dissipation und der Prandtl-Zahl; die Stoffübertragung von der Schmidt-Zahl.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we report the measurements of specific heats of five glass formers as they are cooled through the glass-transition region. The measurements are compared with other specific-heat measurements such as adiabatic-calorimetry and ac-calorimetry measurements. The data are then analyzed using a model of enthalpy relaxation and nonequilibrium cooling, which can track the nonequilibrium relaxation time tau(S). The relevant parameters that describe tau(S) are obtained, allowing us to compare the enthalpy-relaxation times obtained from this method with other methods. We display the clear connection of the unrelaxed enthalpy with the nonequilibrium relaxation time and also show the role played by the delayed heat release from the unrelaxed enthalpy in the glass-transition region. We have also made certain definite observations regarding the equilibrium configurational specific heat and the Vogel-Fulcher law, which describes tau(S).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An important problem regarding pin joints in a thermal environment is addressed. The motivation emerges from structural safety requirements in nuclear and aerospace engineering. A two-dimensional model of a smooth, rigid misfit pin in a large isotropic sheet is considered as an abstraction. The sheet is subjected to a biaxial stress system and far-field unidirectional heat flow. The thermoelastic analysis is complex due to non-linear load-dependent contact and separation conditions at the pin-hole interface and the absence of existence and uniqueness theorems for the class of frictionless thermoelastic contact problems. Identification of relevant parameters and appropriate synthesis of thermal and mechanical variables enables the thermomechanical generalization of pin-joint behaviour. This paper then proceeds to explore the possibility of multiple solutions in such problems, especially interface contact configuration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The understanding of thermoelastic behaviour of joints is significant in order to ensure the integrity of large and complex structures exposed to a thermal environment, particularly in fields such as aerospace and nuclear engineering. Thermomechanical generalization of partial contact behaviour of a pin joint under combined in-plane mechanical loading and on-axis unidirectional heat flow has already been established by the authors for the analytically simpler domains of large plates. This paper successfully extends the on-going investigation to a single pin in a finite rectangular isotropic plate as a two-dimensional abstraction from a practical situation of a multipin fastener joint. The finite element method is used to analyse the joint problem under on-axis thermomechanical loading and unified load-contact relationships are established for a class of loading conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Soils showing changes in plasticity characteristics upon driving form an important group in tropical soils. These changes are attributed to the grouping of particles into aggregates either due to mineralogy or presence of cementing agents and/or pore fluid characteristics. These changes are found to be permanent. In this paper, the effect of these changes leading to changes in index properties is discussed. The coefficient of permeability has been found to be comparable at liquid limit water content for different soils of varying liquid limit values. Permeability is an indirect reflection of microstructure and indicates the flow rate, which depends upon pore geometry. Other mechanical properties like compressibility and shear strength also depend upon pore geometry. These microstructural aspects of liquid limit as a reference state for the analysis of engineering behavior of tropical soils are examined in detail.