942 resultados para growth form
Resumo:
Traditional towns of the Kathmandu Valley boast a fine provision of public spaces in their neighbourhoods. Historically, a hierarchy of public space has been distributed over the entire town with each neighbourhood centered around more or less spacious public squares. However, rapid growth of these towns over the past decades has resulted in haphazard development of new urban areas with little provision of public space. Recent studies indicate that the loss of public space is a major consequence of the uncontrolled urban growth of the Kathmandu Valley and its new neighbourhoods. This paper reviews the current urban growth of the Kathmandu Valley and its impact on the development of public space in new neighbourhoods. The preliminary analysis of the case study of three new neighbourhoods shows that the formation and utilization of neighbourhood public space exhibit fundamental differences from those found in the traditional city cores. The following key issues are identified in this paper: a) Governance and regulations have been a challenge to regulate rapid urban growth; b) The current pattern of neighbourhood formation is found to be different from that of traditional neighbourhoods due to the changes with rapid urban development; c) Public spaces have been compromised in both planned and unplanned new neighbourhoods in terms of their quantity and quality; d) The changing provision of public space has contributed to its changing use and meaning; and e) The changing demographic composition, changing society and life style have had direct impact on the declining use of public space. Moreover, the management of public spaces remains a big challenge due to their changing nature and the changing governance. The current transformation public space does not appear to be conducive, and has led to adversely changing social environment of the new neighbourhoods.
Solid medication dosage form modification at the bedside and in the pharmacy of Queensland hospitals
Resumo:
Acinetobacter baumannii is a multidrug-resistant pathogen associated with hospital outbreaks of infection across the globe, particularly in the intensive care unit. The ability of A. baumannii to survive in the hospital environment for long periods is linked to antibiotic resistance and its capacity to form biofilms. Here we studied the prevalence, expression, and function of the A. baumannii biofilm-associated protein (Bap) in 24 carbapenem-resistant A. baumannii ST92 strains isolated from a single institution over a 10-year period. The bap gene was highly prevalent, with 22/24 strains being positive for bap by PCR. Partial sequencing of bap was performed on the index case strain MS1968 and revealed it to be a large and highly repetitive gene approximately 16 kb in size. Phylogenetic analysis employing a 1,948-amino-acid region corresponding to the C terminus of Bap showed that BapMS1968 clusters with Bap sequences from clonal complex 2 (CC2) strains ACICU, TCDC-AB0715, and 1656-2 and is distinct from Bap in CC1 strains. By using overlapping PCR, the bapMS1968 gene was cloned, and its expression in a recombinant Escherichia coli strain resulted in increased biofilm formation. A Bap-specific antibody was generated, and Western blot analysis showed that the majority of A. baumannii strains expressed an ∼200-kDa Bap protein. Further analysis of three Bap-positive A. baumannii strains demonstrated that Bap is expressed at the cell surface and is associated with biofilm formation. Finally, biofilm formation by these Bap-positive strains could be inhibited by affinity-purified Bap antibodies, demonstrating the direct contribution of Bap to biofilm growth by A. baumannii clinical isolates.
Resumo:
Escherichia coli is the most important etiological agent of urinary tract infections (UTIs). Unlike uropathogenic E. coli, which causes symptomatic infections, asymptomatic bacteriuria (ABU) E. coli strains typically lack essential virulence factors and colonize the bladder in the absence of symptoms. While ABU E. coli can persist in the bladder for long periods of time, little is known about the genetic determinants required for its growth and fitness in urine. To identify such genes, we have employed a transposon mutagenesis approach using the prototypic ABU E. coli strain 83972 and the clinical ABU E. coli strain VR89. Six genes involved in the biosynthesis of various amino acids and nucleobases were identified (carB, argE, argC, purA, metE, and ilvC), and site-specific mutants were subsequently constructed in E. coli 83972 and E. coli VR89 for each of these genes. In all cases, these mutants exhibited reduced growth rates and final cell densities in human urine. The growth defects could be complemented in trans as well as by supplementation with the appropriate amino acid or nucleobase. When assessed in vivo in a mouse model, E. coli 83972carAB and 83972argC showed a significantly reduced competitive advantage in the bladder and/or kidney during coinoculation experiments with the parent strain, whereas 83972metE and 83972ilvC did not. Taken together, our data have identified several biosynthesis pathways as new important fitness factors associated with the growth of ABU E. coli in human urine.
Resumo:
The molecular mechanisms that define asymptomatic bacteriuria (ABU) Escherichia coli colonization of the human urinary tract remain to be properly elucidated. Here, we utilize ABU E. coli strain 83972 as a model to dissect the contribution of siderophores to iron acquisition, growth, fitness, and colonization of the urinary tract. We show that E. coli 83972 produces enterobactin, salmochelin, aerobactin, and yersiniabactin and examine the role of these systems using mutants defective in siderophore biosynthesis and uptake. Enterobactin and aerobactin contributed most to total siderophore activity and growth in defined iron-deficient medium. No siderophores were detected in an 83972 quadruple mutant deficient in all four siderophore biosynthesis pathways; this mutant did not grow in defined iron-deficient medium but grew in iron-limited pooled human urine due to iron uptake via the FecA ferric citrate receptor. In a mixed 1:1 growth assay with strain 83972, there was no fitness disadvantage of the 83972 quadruple biosynthetic mutant, demonstrating its capacity to act as a “cheater” and utilize siderophores produced by the wild-type strain for iron uptake. An 83972 enterobactin/salmochelin double receptor mutant was outcompeted by 83972 in human urine and the mouse urinary tract, indicating a role for catecholate receptors in urinary tract colonization.
Resumo:
Various forms of hydrogenated graphene have been produced to date by several groups, while the synthesis of pure graphane has not been achieved yet. The study of the interface between graphane, in all its possible hydrogenation configurations, and catalyst metal surfaces can be pivotal to assess the feasibility of direct CVD growth methods for this material. We investigated the adhesion of graphane to a Cu(111) surface by adopting the vdW-DF2-C09 exchange-correlation functional, which is able to describe dispersion forces. The results are further compared with the PBE and the LDA exchange-correlation functionals. We calculated the most stable geometrical configurations of the slab/graphane interface and evaluated how graphane's geometrical parameters are modified. We show that dispersion forces play an important role in the slab/graphane adhesion. Band structure calculations demonstrated that in the presence of the interaction with copper, the band gap of graphane is not only preserved, but also enlarged, and this increase can be attributed to the electronic charge accumulated at the interface. We calculated a substantial energy barrier at the interface, suggesting that CVD graphane films might act as reliable and stable insulating thin coatings, or also be used to form compound layers in conjunction with metals and semiconductors.
Resumo:
This review article discusses form-based planning an din details analise the following books: Stepehn Marshall (2012) Urban Coding and Planning (Routledge, New York, USA, 272pp. pISBN 1135689202). Emily Talen (2012) City Rules: How Regulations Affects Urban Form (Island Press, Washington DC, USA, 254 pp. ISBN 9781597266925). Richard Tomlinson (2012) Australia’s Unintended Cities: the Impact of Housing on Urban Development (CSIRO Publishing, Collingwood, Australia, 194pp. ISBN 9780643103771). The history of the city has been written and rewritten many times: the seminal works of Benevolo (1980) and Mumford (1989) reconstruct how settlements, particularly their urban form, have changed over centuries. Rowe and Koetter (1978), Kostof (1991, 1992), Krier (2003), and Rossi and Eisenmann (1982) address instead the components that shape the urban environment: the architect can aggregate and manipulate squares, streets, parks and public buildings to control urban design. Generally these studies aim to reveal the secret of the traditional city in contraposition to the contemporary townscape characterized by planning and zoning, which are generally regarded as problematic and sterile (Woodward, 2013). The ‘secret rules’ that have shaped our cities have a bearing on the relationship of spaces, mixed uses, public environments and walkability (Walters, 2011)...
Resumo:
Bacterial tail-specific proteases (Tsps) have been attributed a wide variety of functions including intracellular virulence, cell wall morphology, proteolytic signal cascades and stress response. This study tested the hypothesis that Tsp has a key function for the transmissive form of Legionella pneumophila. A tsp mutant was generated in Legionella pneumophila 130b and the characteristics of this strain and the isogenic wild-type were examined using a range of growth and proteomic analyses. Recombinant Tsp protein was also produced and analyzed. The L. pneumophila tsp mutant showed no defect in growth on rich media or during thermo-osmotic stress conditions. In addition, no defects in cellular morphology were observed when the cells were examined using transmission electron microscopy. Purified recombinant Tsp was found to be an active protease with a narrow substrate range. Proteome analysis using iTRAQ (5% coverage of the proteome) found that, of those proteins detected, only 5 had different levels in the tsp mutant compared to the wild type. ACP (Acyl Carrier Protein), which has a key role for Legionella differentiation to the infectious form, was reduced in the tsp mutant; however, tsp(-) was able to infect and replicate inside macrophages to the same extent as the wild type. Combined, these data demonstrate that Tsp is a protease but is not essential for Legionella growth or cell infection. Thus, Tsp may have functional redundancy in Legionella.
Resumo:
Lymphatic vessels guide interstitial fluid, modulate immune responses by regulating leukocyte and antigen trafficking to lymph nodes, and in a cancer setting enable tumor cells to track to regional lymph nodes. The aim of the study was to determine whether primary murine lymphatic endothelial cells (mLECs) show conserved vascular endothelial growth factor (VEGF) signaling pathways with human LECs (hLECs). LECs were successfully isolated from murine dermis and prostate. Similar to hLECs, vascular endothelial growth factor (VEGF) family ligands activated MAPK and pAkt intracellular signaling pathways in mLECs. We describe a robust protocol for isolation of mLECs which, by harnessing the power of transgenic and knockout mouse models, will be a useful tool to study how LEC phenotype contributes to alterations in lymphatic vessel formation and function.
Resumo:
Epithelial to mesenchymal transition (EMT) has gained widespread acceptance over recent years as a mechanism by which normally sessile epithelial tumour cells can move away from the primary tumour and metastasize. This review article examines the role of a number of growth factors in inducing EMT, and the reverse process mesenchymal to epithelial transition. Unique and common intracellular signalling pathways are highlighted. A comprehensive understanding of the regulation of EMT will be critical in manipulating this process to develop novel anti-metastasis therapies.