947 resultados para grating targets
Resumo:
We report on inscription of microchannels of different widths in optical fiber using femtosecond (fs) laser inscription assisted chemical etching and the narrowest channel has been created with a width down to only 1.2µm. Microchannels with 5µm and 35µm widths were fabricated together with Fabry-Pérot (FP) cavities formed by UV laser written fiber Bragg gratings (FBGs), creating high function and linear response refractometers. The device with a 5µm microchannel has exhibited a refractive index (RI) detection range up to 1.7, significantly higher than all fiber grating RI sensors. In addition, the microchannel FBG FP structures have been theoretically simulated showing excellent agreement with experimental measured characteristics.
Resumo:
We implement an optical biosensor using long-period fibre grating immobilised with probe DNA. It has been used to detect hybridisation of target DNA, showing a high sensitivity and reusability function.
Resumo:
Using an optical biosensor based on dual-peak long-period fibre grating, we demonstrate the detection of interactions between DNA biomolecules in real-time, showing a high sensitivity and reusability function.
Resumo:
We report a strong polarization dependent coupling behavior of fiber Bragg gratings with excessively tilted structures up to 81 . This unique property has been utilized to implement a novel twist sensor, showing high torsion sensitivity. The twist induced light coupling interchange between the two birefringence modes makes it possible to interrogate such a sensor using low-cost intensity demodulation technique.
Resumo:
A novel technology for simultaneous and independent measurement of dual parameters is proposed and experimented. The length of a single fibre Bragg grating (FBG) is divided into two parts. The temperature variation and another measurand can be measured independently and simultaneously, and the thermal effect can be erased with great ease.
Resumo:
High-sensitivity optical chemsensors have been implemented by exploiting fibre Bragg grating structures UV-inscribed in D-shape, single-mode and multimode fibres and post-sensitized by hydrofluoric acid (HF) etching treatment. We have demonstrated that the Bragg grating structures which are intrinsically insensitive to chemicals can be sensitized by effective etching. All etched devices possess refractive index sensing capability that offers an encoding function to chemical concentrations. Most etched devices have been used to measure the concentrations of sugar solutions, showing a potential capability of detecting concentration changes as small as 0.1–0.5%.
Resumo:
We present a simple optical chemsensor device based on tilted Bragg grating structures ultraviolet-inscribed in conventional multimode fiber and sensitized by a hydrofluoric (HF)-etching treatment. The transition behaviors of fiber Bragg gratings (FBGs) from normal to tilted structures and their spectral evolution under HF-etching have been studied. The etched devices have been used to measure the concentrations of sugar solution, showing a potential capability of detecting concentration changes as small as 0.5%, which is an order of magnitude lower than that of previously reported FBG sensors in single-mode fiber.
Resumo:
We propose a dual-parameter optical sensor device achieved by UV inscription of a hybrid long-period grating-fiber Bragg grating structure in D fiber. The hybrid configuration permits the detection of the temperature from the latter's response and measurement of the external refractive index from the former's response. In addition, the host D fiber permits effective modification of the device's sensitivity by cladding etching. The grating sensor has been used to measure the concentrations of aqueous sugar solutions, demonstrating its potential capability to detect concentration changes as small as 0.01%.
Resumo:
We propose a remotely tuneable optical Bragg grating filter written in polymer optical fibre (POF). Fibre optical pumping in the fibre's absorption bands increases the fibre temperature, which causes a negative wavelength change of the POF Bragg grating. By choosing a proper pumping wavelength remote tuning of the optical filter can be readily realized without changing the gain of the optical signal.
Resumo:
The orientations of lines and edges are important in defining the structure of the visual environment, and observers can detect differences in line orientation within the first few hundred milliseconds of scene viewing. The present work is a psychophysical investigation of the mechanisms of early visual orientation-processing. In experiments with briefly presented displays of line elements, observers indicated whether all the elements were uniformly oriented or whether a uniquely oriented target was present among uniformly oriented nontargets. The minimum difference between nontarget and target orientations that was required for effective target-detection (the orientation increment threshold) varied little with the number of elements and their spatial density, but the percentage of correct responses in detection of a large orientation-difference increased with increasing element density. The differing variations with element density of thresholds and percent-correct scores may indicate the operation of more than one mechanism in early visual orientation-processIng. Reducing element length caused threshold to increase with increasing number of elements, showing that the effectiveness of rapid, spatially parallel orientation-processing depends on element length. Orientational anisotropy in line-target detection has been reported previously: a coarse periodic variation and some finer variations in orientation increment threshold with nontarget orientation have been found. In the present work, the prominence of the coarse variation in relation to finer variations decreased with increasing effective viewing duration, as if the operation of coarse orientation-processing mechanisms precedes the operation of finer ones. Orientational anisotropy was prominent even when observers lay horizontally and viewed displays by looking upwards through a black cylinder that excluded all possible visual references for orientation. So, gravitational and visual cues are not essential to the definition of an orientational reference frame for early vision, and such a reference can be well defined by retinocentric neural coding, awareness of body-axis orientation, or both.
Resumo:
The authors describe a detailed investigation on tilted fiber Bragg grating (TFBG) structures with tilted angles exceeding 45°. In contrast to the backward mode coupling mechanism of Bragg gratings with normal and small tilting structures, the ex-45° TFBGs facilitate the light coupling to the forward-propagating cladding modes. The authors have also theoretically and experimentally examined the mode coupling transition of TFBGs with small, medium, and large tilt angles. In particular, experiments are conducted to investigate the spectra and far-field distribution, as well as temperature, strain, and refractive-index sensitivities of ex-45° devices. It has been revealed that these ex-45° gratings exhibit ultralow thermal sensitivity. As in-fiber devices, they may be superior to conventional Bragg and long-period gratings when the low thermal cross sensitivity is required.
Resumo:
A report is presented on the inscription of a fibre Bragg grating into a microstructured polymer optical fibre fabricated from TOPAS cyclic olefin copolymer. This material offers two important advantages over poly (methyl methacrylate), which up to now has formed the basis for polymer fibre Bragg gratings: TOPAS has a much lower water affinity and has useful properties for biosensing. The grating had a Bragg wavelength of 1569 nm and a temperature sensitivity of -36.5±0.3 pm/°C.
Resumo:
In this work we experimentally investigate the response time of humidity sensors based on polymer optical fibre (POF) Bragg gratings. By the use of etching with acetone we can control the diameter of POF based on poly (methyl methacrylate) in order to reduce the diffusion time of water into the polymer and hence speed up the relative wavelength change caused by humidity variations. A much improved response time of 11 minutes has been achieved by using a POF FBG with a reduced diameter of 135 microns.
Resumo:
We report the fabrication and characterization of a fiber Bragg grating (FBG) with 870 nm resonance wavelength in a single-mode TOPAS microstructured polymer optical fiber (mPOF). The grating has been UV-written with the phasemask technique using a 325 nm HeCd laser. The static tensile strain sensitivity has been measured as 0.64 pm/µstrain, and the temperature sensitivity was -60 pm/°C. This is the first 870nm FBG and the first demonstration of a negative temperature response for the TOPAS FBG, for which earlier results have indicated a positive temperature response. The relatively low material loss of the fiber at this wavelength compared to that at longer wavelengths will considerably enhance the potential utility of the TOPAS FBG.