999 resultados para geometry features


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A wide variety of processes make use of plain orifice nozzles. Fuel injectors for internal combustion engines incorporate these nozzles to generate finely atomized sprays. Processes such as jet cutting, jet cleaning, and hydroentanglement, on the other hand, use similar nozzles, but require coherent jets. The spray or jet characteristics depend on the stability of the flow emerging from the orifice. This problem has been extensively researched for nozzles with diameters above 300 μm. Much less is known about the characteristics of jets produced by nozzles with smaller diameters, where viscous effects and small geometric variations due to manufacturing tolerances are likely to play an increasing role. Results are presented of a wide-ranging investigation of geometry effects on the flow parameters and jet characteristics of nozzles with diameters between 120 and 170 μm. Nozzles with circular cross-section and conical, cone-capillary and capillary axial designs were investigated. For conical and cone-capillary nozzles, the effect of cone angle and effects due to interactions between adjacent nozzles in the multi-hole cone-capillary nozzles were studied. For capillary nozzles, the effects of diameter variations and inlet edge roundness for capillary nozzles were considered. Furthermore, the effect of varying the aspect ratio (ratio of major and minor axes) of elliptical nozzles was studied. Flowrate and jet impact force measurements were carried out to determine the discharge coefficient C, velocity coefficient C, and contraction coefficient C of the nozzles for supply pressures between 3 and 12 MPa. Visualizations of the jet flow were carried out in the vicinity of the nozzle exit in order to identify near-nozzle flow regimes and to study jet coherence. The relationship between nozzle geometry, discharge characteristics, and jet coherence is examined. © IMechE 2006.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cone-capillary nozzles with varying cone angles from 10° to 120° and a capillary diameter of 120μ are experimentally investigated for their application in the hydroentanglement process. Cone-up and cone-down configurations in a range of water pressures of 30-120 bar are tested. The effects of the cone angle on flow parameters such as discharge and velocity coefficients and intact length are studied. Flow visualization techniques are used to recognize the flow regimes and characteristics and to inspect and compare the intact length and appearance of the jets. Cone-down nozzles with more consistent flow properties, lower discharges, and higher velocity coefficients are more suitable for the hydroentanglement process. Single-cone nozzles without capillaries and with varying cone angles are also tested. The flow properties of the jets from the single-cone nozzles are compared with the cone-capillary nozzles of the same cone angle to study the effect of the capillary section. The effect of the interaction of adjacent nozzles on the flow from multi-hole nozzles is studied, and the characteristics of the jets from the multi-hole nozzles are compared with the single-hole nozzles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVES: Risk stratification of Barrett's esophagus (BE) patients based on clinical and endoscopic features may help to optimize surveillance practice for esophageal adenocarcinoma (EAC) development. The aim of this study was to investigate patient symptoms and endoscopic features at index endoscopy and risk of neoplastic progression in a large population-based cohort of BE patients.

METHODS: A retrospective review of hospital records relating to incident BE diagnosis was conducted in a subset of patients with specialized intestinal metaplasia from the Northern Ireland BE register. Patients were matched to the Northern Ireland Cancer Registry to identify progressors to EAC or esophageal high-grade dysplasia (HGD). Cox proportional hazards models were applied to evaluate the association between endoscopic features, symptoms, and neoplastic progression risk.

RESULTS: During 27,997 person-years of follow-up, 128 of 3,148 BE patients progressed to develop HGD/EAC. Ulceration within the Barrett's segment, but not elsewhere in the esophagus, was associated with an increased risk of progression (hazard ratio (HR) 1.72; 95% confidence interval (CI): 1.08–2.76). Long-segment BE carried a significant sevenfold increased risk of progression compared with short-segment BE; none of the latter group developed EAC during the study period. Conversely, the absence of reflux symptoms was associated with an increased risk of cancer progression (HR 1.61; 95% CI: 1.05–2.46).

CONCLUSIONS: BE patients presenting with a long-segment BE or Barrett's ulcer have an increased risk of progressing to HGD/EAC and should be considered for more intense surveillance. The absence of reflux symptoms at BE diagnosis is not associated with a reduced risk of malignant progression, and may carry an increased risk of progression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Approximately 20 per cent of quasi-stellar objects (QSOs) exhibit broad, blue-shifted absorption lines in their ultraviolet spectra. Such features provide clear evidence for significant outflows from these systems, most likely in the form of accretion disc winds. These winds may represent the ‘quasar’ mode of feedback that is often invoked in galaxy formation/evolution models, and they are also key to unification scenarios for active galactic nuclei (AGN) and QSOs. To test these ideas, we construct a simple benchmark model of an equatorial, biconical accretion disc wind in a QSO and use a Monte Carlo ionization/radiative transfer code to calculate the ultraviolet spectra as a function of viewing angle. We find that for plausible outflow parameters, sightlines looking directly into the wind cone do produce broad, blue-shifted absorption features in the transitions typically seen in broad absorption line (BAL) QSOs. However, our benchmark model is intrinsically X-ray weak in order to prevent overionization of the outflow, and the wind does not yet produce collisionally excited line emission at the level observed in non-BAL QSOs. As a first step towards addressing these shortcomings, we discuss the sensitivity of our results to changes in the assumed X-ray luminosity and mass-loss rate, Ṁwind. In the context of our adopted geometry, Ṁwind ∼ Ṁacc is required in order to produce significant BAL features. The kinetic luminosity and momentum carried by such outflows would be sufficient to provide significant feedback.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The building sector is widely recognized as having a major impact on sustainable development. Both in developed and developing countries, sustainability in buildings approaches are growing. Laterite dimension stone (LDS) is a building material that was traditionally used in sub-Saharan Africa, but its technical features still need to be assessed. This article presents some results of a study focused on the characterization of LDS exploited in Burkina Faso for building purposes. The measured average thermal conductivity is 0.51  W/mK, which increases with water content and evolves with the specific gravity and with porosity. Rock mineral phases (quartz, goethite, hematite, magnetite) are cemented by kaolinite. The porosity of the material is high (30%), with macropores visible on the surface and found in the rock inner structure as well. Results from the hygrothermal monitoring of a pilot building are also presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Integrating analysis and design models is a complex task due to differences between the models and the architectures of the toolsets used to create them. This complexity is increased with the use of many different tools for specific tasks using an analysis process. In this work various design and analysis models are linked throughout the design lifecycle, allowing them to be moved between packages in a way not currently available. Three technologies named Cellular Modeling, Virtual Topology and Equivalencing are combined to demonstrate how different finite element meshes generated on abstract analysis geometries can be linked to their original geometry. Cellular models allow interfaces between adjacent cells to be extracted and exploited to transfer analysis attributes such as mesh associativity or boundary conditions between equivalent model representations. Virtual Topology descriptions used for geometry clean-up operations are explicitly stored so they can be reused by downstream applications. Establishing the equivalence relationships between models enables analysts to utilize multiple packages for specialist tasks without worrying about compatibility issues or substantial rework.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract Image

A new experimental procedure based on attenuated total reflection infrared spectroscopy has been developed to investigate surface species under liquid phase reaction conditions. The technique has been tested by investigating the enhanced selectivity in the hydrogenation of α,β-unsaturated aldehyde citral over a 5% Pt/SiO2 catalyst toward unsaturated alcohols geraniol/nerol, which occurs when citronellal is added to the reaction. The change in selectivity is proposed to be the result of a change in the citral adsorption mode in the presence of citronellal. Short time on stream attenuated total internal reflection infrared spectroscopy has allowed identification of the adsorption modes of citral. With no citronellal, citral adsorbs through both the C═C and C═O groups; however, in the presence of citronellal, citral adsorption occurs through the C═O group only, which is proposed to be the cause of the altered reaction selectivity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bradykinin-related peptides (BRPs) are significant components of the defensive skin secretions of many anuran amphibians, and these secretions represent the source of the most diverse spectrum of such peptides so far encountered in nature. Of the many families of bioactive peptides that have been identified from this source, the BRPs uniquely appear to represent homologues of counterparts that have specific distributions and receptor targets within discrete vertebrate taxa, ranging from fishes through mammals. Their broad spectra of actions, including pain and inflammation induction and smooth muscle effects, make these peptides ideal weapons in predator deterrence. Here, we describe a novel 12-mer BRP (RVALPPGFTPLR-RVAL-(L1, T6, L8)-bradykinin) from the skin secretion of the Fujian large-headed frog (Limnonectes fujianensis). The C-terminal 9 residues of this BRP (-LPPGFTPLR) exhibit three amino acid substitutions (L/R at Position 1, T/S at Position 6 and L/F at Position 8) when compared to canonical mammalian bradykinin (BK), but are identical to the kinin sequence present within the cloned kininogen-2 from the Chinese soft-shelled turtle (Pelodiscus sinensis) and differ from that encoded by kininogen-2 of the Tibetan ground tit (Pseudopodoces humilis) at just a single site (F/L at Position 8). These data would imply that the novel BRP is an amphibian defensive agent against predation by sympatric turtles and also that the primary structure of the avian BK, ornithokinin (RPPGFTPLR), is not invariant within this taxon. Synthetic RVAL-(L1, T6, L8)-bradykinin was found to be an antagonist of BK-induced rat tail artery smooth muscle relaxation acting via the B2-receptor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The production of shock- and collimated jet-like features is recorded from the self-emission of a plasma using a 16- frame camera, which can show the progression of the interaction over short (100s ns) durations. A cluster of laser beams, with intensity 1015 W/cm2, was focused onto a planar aluminum foil to produce a plasma that expanded into 0.7 mbar of argon gas. The acquisition of 16 ultrafast images on a single shot allows prompt spatial and temporal characterization of the plasma and enables the velocity of the jet- and shock-like features to be calculated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using the Otto geometry of attenuated total reflection (prism-air gap-sample), front illuminated PtSi/Si Schottky barrier detectors are shown to exhibit enhanced photocurrent at surface plasmon resonance in the near infrared region. Correlation of the measured photocurrent with the calculated transmittance of light into the Si substate is demonstrated. The transmittance, which is due to surface plasmon re-radiation, is the optical parameter of principal importance in photosignal generation since the photon energies used here are greater than the silicon intrinsic bandgap. The results presented here indicate clearly the important features in optimizing surface plasmon enhancement in photodetection both above and below the silicon absorption edge.