981 resultados para geometric-sequence control


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a variable speed autonomous squirrel cage generator excited by a current-controlled voltage source inverter to be used in stand-alone micro-hydro power plants. The paper proposes a system control strategy aiming to properly excite the machine as well as to achieve the load voltage control. A feed-forward control sets the appropriate generator flux by taking into account the actual speed and the desired load voltage. A load voltage control loop is used to adjust the generated active power in order to sustain the load voltage at a reference value. The control system is based on a rotor flux oriented vector control technique which takes into account the machine saturation effect. The proposed control strategy and the adopted system models were validated both by numerical simulation and by experimental results obtained from a laboratory prototype. Results covering the prototype start-up, as well as its steady-state and dynamical behavior are presented. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Power converters play a vital role in the integration of wind power into the electrical grid. Variable-speed wind turbine generator systems have a considerable interest of application for grid connection at constant frequency. In this paper, comprehensive simulation studies are carried out with three power converter topologies: matrix, two-level and multilevel. A fractional-order control strategy is studied for the variable-speed operation of wind turbine generator systems. The studies are in order to compare power converter topologies and control strategies. The studies reveal that the multilevel converter and the proposed fractional-order control strategy enable an improvement in the power quality, in comparison with the other power converters using a classical integer-order control strategy. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multilevel power converters have been introduced as the solution for high-power high-voltage switching applications where they have well-known advantages. Recently, full back-to-back connected multilevel neutral point diode clamped converters (NPC converter) have been used inhigh-voltage direct current (HVDC) transmission systems. Bipolar-connected back-to-back NPC converters have advantages in long-distance HVDCtransmission systems over the full back-to-back connection, but greater difficulty to balance the dc capacitor voltage divider on both sending and receiving end NPC converters. This study shows that power flow control and dc capacitor voltage balancing are feasible using fast optimum-predictive-based controllers in HVDC systems using bipolar back-to-back-connected five-level NPC multilevel converters. For both converter sides, the control strategytakes in account active and reactive power, which establishes ac grid currents in both ends, and guarantees the balancing of dc bus capacitor voltages inboth NPC converters. Additionally, the semiconductor switching frequency is minimised to reduce switching losses. The performance and robustness of the new fast predictive control strategy, and its capability to solve the DC capacitor voltage balancing problem of bipolar-connected back-to-back NPCconverters are evaluated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Voltage source multilevel power converter structures are being considered for high power high voltage applications where they have well known advantages. Recently, full back-to-back connected multilevel neutral diode clamped converters (NPC) have been used in high voltage direct current (HVDC) transmission systems. Bipolar back-to-back connection of NPCs have advantages in long distance HVDC transmission systems, but highly increased difficulties to balance the dc capacitor voltage dividers on both sending and receiving end NPCs. This paper proposes a fast optimum-predictive controller to balance the dc capacitor voltages and to control the power flow in a long distance HVDCsystem using bipolar back-to-back connected NPCs. For both converter sides, the control strategy considers active and reactive power to establish ac grid currents on sending and receiving ends, while guaranteeing the balancing of both NPC dc bus capacitor voltages. Furthermore, the fast predictivecontroller minimizes the semiconductor switching frequency to reduce global switching losses. The performance and robustness of the new fast predictive control strategy and the associated dc capacitors voltage balancing are evaluated. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a direct power control (DPC) for three-phase matrix converters operating as unified power flow controllers (UPFCs). Matrix converters (MCs) allow the direct ac/ac power conversion without dc energy storage links; therefore, the MC-based UPFC (MC-UPFC) has reduced volume and cost, reduced capacitor power losses, together with higher reliability. Theoretical principles of direct power control (DPC) based on sliding mode control techniques are established for an MC-UPFC dynamic model including the input filter. As a result, line active and reactive power, together with ac supply reactive power, can be directly controlled by selecting an appropriate matrix converter switching state guaranteeing good steady-state and dynamic responses. Experimental results of DPC controllers for MC-UPFC show decoupled active and reactive power control, zero steady-state tracking error, and fast response times. Compared to an MC-UPFC using active and reactive power linear controllers based on a modified Venturini high-frequency PWM modulator, the experimental results of the advanced DPC-MC guarantee faster responses without overshoot and no steady-state error, presenting no cross-coupling in dynamic and steady-state responses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many of the most common human functions such as temporal and non-monotonic reasoning have not yet been fully mapped in developed systems, even though some theoretical breakthroughs have already been accomplished. This is mainly due to the inherent computational complexity of the theoretical approaches. In the particular area of fault diagnosis in power systems however, some systems which tried to solve the problem, have been deployed using methodologies such as production rule based expert systems, neural networks, recognition of chronicles, fuzzy expert systems, etc. SPARSE (from the Portuguese acronym, which means expert system for incident analysis and restoration support) was one of the developed systems and, in the sequence of its development, came the need to cope with incomplete and/or incorrect information as well as the traditional problems for power systems fault diagnosis based on SCADA (supervisory control and data acquisition) information retrieval, namely real-time operation, huge amounts of information, etc. This paper presents an architecture for a decision support system, which can solve the presented problems, using a symbiosis of the event calculus and the default reasoning rule based system paradigms, insuring soft real-time operation with incomplete, incorrect or domain incoherent information handling ability. A prototype implementation of this system is already at work in the control centre of the Portuguese Transmission Network.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although we have many electric devices at home, there are just few systems to evaluate, monitor and control them. Sometimes users go out and leave their electric devices turned on what can cause energy wasting and dangerous situations. Therefore most of the users may want to know the using states of their electrical appliances through their mobile devices in a pervasive way. In this paper, we propose an Intelligent Supervisory Control System to evaluate, monitor and control the use of electric devices in home, from outside. Because of the transferring data to evaluate, monitor and control user's location and state of home (ex. nobody at home) may be opened to attacks leading to dangerous situations. In our model we include a location privacy module and encryption module to provide security to user location and data. Intelligent Supervising Control System gives to the user the ability to manage electricity loads by means of a multi-agent system involving evaluation, monitoring, control and energy resource agents.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the two-Higgs-doublet model (THDM), generalized-CP transformations (phi(i) -> X-ij phi(*)(j) where X is unitary) and unitary Higgs-family transformations (phi(i) -> U-ij phi(j)) have recently been examined in a series of papers. In terms of gauge-invariant bilinear functions of the Higgs fields phi(i), the Higgs-family transformations and the generalized-CP transformations possess a simple geometric description. Namely, these transformations correspond in the space of scalar-field bilinears to proper and improper rotations, respectively. In this formalism, recent results relating generalized CP transformations with Higgs-family transformations have a clear geometric interpretation. We will review what is known regarding THDM symmetries, as well as derive new results concerning those symmetries, namely how they can be interpreted geometrically as applications of several CP transformations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As wind power generation undergoes rapid growth, new technical challenges emerge: dynamic stability and power quality. The influence of wind speed disturbances and a pitch control malfunction on the quality of the energy injected into the electric grid is studied for variable-speed wind turbines with different power-electronic converter topologies. Additionally, a new control strategy is proposed for the variable-speed operation of wind turbines with permanent magnet synchronous generators. The performance of disturbance attenuation and system robustness is ascertained. Simulation results are presented and conclusions are duly drawn. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper is on variable-speed wind turbines with permanent magnet synchronous generator (PMSG). Three different drive train mass models and three different topologies for the power-electronic converters are considered. The three different topologies considered are respectively a matrix, a two-level and a multilevel converter. A novel control strategy, based on fractional-order controllers, is proposed for the wind turbines. Simulation results are presented to illustrate the behaviour of the wind turbines during a converter control malfunction, considering the fractional-order controllers. Finally, conclusions are duly drawn. Copyright (C) 2010 John Wiley & Sons, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main aims of this work are the development and the validation of one generic algorithm to provide the optimal control of small power wind generators. That means up to 40 kW and blades with fixed pitch angle. This algorithm allows the development of controllers to fetch the wind generators at the desired operational point in variable operating conditions. The problems posed by the variable wind intensity are solved using the proposed algorithm. This is done with no explicit measure of the wind velocity, and so no special equipment or anemometer is required to compute or measure the wind velocity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years the use of several new resources in power systems, such as distributed generation, demand response and more recently electric vehicles, has significantly increased. Power systems aim at lowering operational costs, requiring an adequate energy resources management. In this context, load consumption management plays an important role, being necessary to use optimization strategies to adjust the consumption to the supply profile. These optimization strategies can be integrated in demand response programs. The control of the energy consumption of an intelligent house has the objective of optimizing the load consumption. This paper presents a genetic algorithm approach to manage the consumption of a residential house making use of a SCADA system developed by the authors. Consumption management is done reducing or curtailing loads to keep the power consumption in, or below, a specified energy consumption limit. This limit is determined according to the consumer strategy and taking into account the renewable based micro generation, energy price, supplier solicitations, and consumers’ preferences. The proposed approach is compared with a mixed integer non-linear approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper deals with the application of an intelligent tutoring approach to delivery training in diagnosis procedures of a Power System. In particular, the mechanisms implemented by the training tool to support the trainees are detailed. This tool is part of an architecture conceived to integrate Power Systems tools in a Power System Control Centre, based on an Ambient Intelligent paradigm. The present work is integrated in the CITOPSY project which main goal is to achieve a better integration between operators and control room applications, considering the needs of people, customizing requirements and forecasting behaviors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes an architecture conceived to integrate Power Sys-tems tools in a Power System Control Centre, based on an Ambient Intelligent (AmI) paradigm. This architecture is an instantiation of the generic architecture proposed in [1] for developing systems that interact with AmI environments. This architecture has been proposed as a consequence of a methodology for the inclu-sion of Artificial Intelligence in AmI environments (ISyRAmI - Intelligent Sys-tems Research for Ambient Intelligence). The architecture presented in the paper will be able to integrate two applications in the control room of a power system transmission network. The first is SPARSE expert system, used to get diagnosis of incidents and to support power restoration. The second application is an Intelligent Tutoring System (ITS) incorporating two training tools. The first tutoring tool is used to train operators to get the diagnosis of incidents. The second one is another tutoring tool used to train operators to perform restoration procedures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The efficacy of a larvicide, temephos, for controlling Ae. aegypti was evaluated in a cemetery in Buenos Aires, Argentina. Breeding sites decreased from 18.4% in the first study period (Nov 1998 to May 1999, without temephos) to 2.2% in the second period (Nov 1999 to May 2000, two applications), and to 0.05% in the third one (Nov 2000 to May 2001, five applications). Ovitraps with eggs decreased from 17% in the first period to 5.8% in the second period, and to 2.9% in the third one. Results suggest that, in Buenos Aires, Ae. aegypti populations are highly susceptible to temephos. It is recommended to limit the use of temephos to prevent potential epidemics rather than for routine control.