939 resultados para genetic and phenotypic correlations
Resumo:
Evolutionary change in New World Monkey (NWM) skulls occurred primarily along the line of least resistance defined by size (including allometric) variation (g(max)). Although the direction of evolution was aligned with this axis, it was not clear whether this macroevolutionary pattern results from the conservation of within population genetic covariance patterns (long-term constraint) or long-term selection along a size dimension, or whether both, constraints and selection, were inextricably involved. Furthermore, G-matrix stability can also be a consequence of selection, which implies that both, constraints embodied in g(max) and evolutionary changes observed on the trait averages, would be influenced by selection Here, we describe a combination of approaches that allows one to test whether any particular instance of size evolution is a correlated by-product due to constraints (g(max)) or is due to direct selection on size and apply it to NWM lineages as a case study. The approach is based on comparing the direction and amount of evolutionary change produced by two different simulated sets of net-selection gradients (beta), a size (isometric and allometric size) and a nonsize set. Using this approach it is possible to distinguish between the two hypotheses (indirect size evolution due to constraints or direct selection on size), because although both may produce an evolutionary response aligned with g(max), the amount of change produced by random selection operating through the variance/covariance patterns (constraints hypothesis) will be much smaller than that produced by selection on size (selection hypothesis). Furthermore, the alignment of simulated evolutionary changes with g(max) when selection is not on size is not as tight as when selection is actually on size, allowing a statistical test of whether a particular observed case of evolution along the line of least resistance is the result of selection along it or not. Also, with matrix diagonalization (principal components [PC]) it is possible to calculate directly the net-selection gradient on size alone (first PC [PC1]) by dividing the amount of phenotypic difference between any two populations by the amount of variation in PC1, which allows one to benchmark whether selection was on size or not
Resumo:
The present study seeks to develop nuclear markers for the kelp gull (Larus dominicanus). We hereby report the characterization of 12 independent nuclear introns, where 104 single nucleotide polymorphisms (SNPs) in 8138 sequenced base pairs were observed. These SNP markers are the first to be designed for genotyping a gull species. The markers will provide useful tools for understanding which processes act or acted upon kelp gulls to cause their low genetic variability in mitochondrial DNA. In addition, these markers open a new opportunity for population genetic and evolutionary studies in the Laridae group.
Resumo:
Changes in patterns and magnitudes of integration may influence the ability of a species to respond to selection. Consequently, modularity has often been linked to the concept of evolvability, but their relationship has rarely been tested empirically. One possible explanation is the lack of analytical tools to compare patterns and magnitudes of integration among diverse groups that explicitly relate these aspects to the quantitative genetics framework. We apply such framework here using the multivariate response to selection equation to simulate the evolutionary behavior of several mammalian orders in terms of their flexibility, evolvability and constraints in the skull. We interpreted these simulation results in light of the integration patterns and magnitudes of the same mammalian groups, described in a companion paper. We found that larger magnitudes of integration were associated with a blur of the modules in the skull and to larger portions of the total variation explained by size variation, which in turn can exert a strong evolutionary constraint, thus decreasing the evolutionary flexibility. Conversely, lower overall magnitudes of integration were associated with distinct modules in the skull, to smaller fraction of the total variation associated with size and, consequently, to weaker constraints and more evolutionary flexibility. Flexibility and constraints are, therefore, two sides of the same coin and we found them to be quite variable among mammals. Neither the overall magnitude of morphological integration, the modularity itself, nor its consequences in terms of constraints and flexibility, were associated with absolute size of the organisms, but were strongly associated with the proportion of the total variation in skull morphology captured by size. Therefore, the history of the mammalian skull is marked by a trade-off between modularity and evolvability. Our data provide evidence that, despite the stasis in integration patterns, the plasticity in the magnitude of integration in the skull had important consequences in terms of evolutionary flexibility of the mammalian lineages.
Resumo:
The neuromuscular disorders are a heterogeneous group of genetic diseases, caused by mutations in genes coding sarcolemmal, sarcomeric, and citosolic muscle proteins. Deficiencies or loss of function of these proteins leads to variable degree of progressive loss of motor ability. Several animal models, manifesting phenotypes observed in neuromuscular diseases, have been identified in nature or generated in laboratory. These models generally present physiological alterations observed in human patients and can be used as important tools for genetic, clinic, and histopathological studies. The mdx mouse is the most widely used animal model for Duchenne muscular dystrophy (DMD). Although it is a good genetic and biochemical model, presenting total deficiency of the protein dystrophin in the muscle, this mouse is not useful for clinical trials because of its very mild phenotype. The canine golden retriever MD model represents a more clinically similar model of DMD due to its larger size and significant muscle weakness. Autosomal recessive limb-girdle MD forms models include the SJL/J mice, which develop a spontaneous myopathy resulting from a mutation in the Dysferlin gene, being a model for LGMD2B. For the human sarcoglycanopahties (SG), the BIO14.6 hamster is the spontaneous animal model for delta-SG deficiency, whereas some canine models with deficiency of SG proteins have also been identified. More recently, using the homologous recombination technique in embryonic stem cell, several mouse models have been developed with null mutations in each one of the four SG genes. All sarcoglycan-null animals display a progressive muscular dystrophy of variable severity and share the property of a significant secondary reduction in the expression of the other members of the sarcoglycan subcomplex and other components of the Dystrophin-glycoprotein complex. Mouse models for congenital MD include the dy/dy (dystrophia-muscularis) mouse and the allelic mutant dy(2J)/dy(2J) mouse, both presenting significant reduction of alpha 2-laminin in the muscle and a severe phenotype. The myodystrophy mouse (Large(myd)) harbors a mutation in the glycosyltransferase Large, which leads to altered glycosylation of alpha-DG, and also a severe phenotype. Other informative models for muscle proteins include the knockout mouse for myostatin, which demonstrated that this protein is a negative regulator of muscle growth. Additionally, the stress syndrome in pigs, caused by mutations in the porcine RYR1 gene, helped to localize the gene causing malignant hypertermia and Central Core myopathy in humans. The study of animal models for genetic diseases, in spite of the existence of differences in some phenotypes, can provide important clues to the understanding of the pathogenesis of these disorders and are also very valuable for testing strategies for therapeutic approaches.
Resumo:
With the aim of determining the genetic basis of metabolic regulation in tomato fruit, we constructed a detailed physical map of genomic regions spanning previously described metabolic quantitative trait loci of a Solanum pennellii introgression line population. Two genomic libraries from S. pennellii were screened with 104 colocated markers from five selected genomic regions, and a total of 614 bacterial artificial chromosome (BAC)/cosmids were identified as seed clones. Integration of sequence data with the genetic and physical maps of Solanum lycopersicum facilitated the anchoring of 374 of these BAC/cosmid clones. The analysis of this information resulted in a genome-wide map of a nondomesticated plant species and covers 10% of the physical distance of the selected regions corresponding to approximately 1% of the wild tomato genome. Comparative analyses revealed that S. pennellii and domesticated tomato genomes can be considered as largely colinear. A total of 1,238,705 bp from both BAC/cosmid ends and nine large insert clones were sequenced, annotated, and functionally categorized. The sequence data allowed the evaluation of the level of polymorphism between the wild and cultivated tomato species. An exhaustive microsynteny analysis allowed us to estimate the divergence date of S. pennellii and S. lycopersicum at 2.7 million years ago. The combined results serve as a reference for comparative studies both at the macrosyntenic and microsyntenic levels. They also provide a valuable tool for fine-mapping of quantitative trait loci in tomato. Furthermore, they will contribute to a deeper understanding of the regulatory factors underpinning metabolism and hence defining crop chemical composition.
A New Representation And Crossover Operator For Search-based Optimization Of Software Modularization
A New Representation And Crossover Operator For Search-based Optimization Of Software Modularization
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Foram estudadas 100 progênies de meio-irmãos de uma sub-população de milho (Zea mays L.) Composto Flint com o objetivo de avaliar a resistência de genótipos à lagarta-da-espiga Helicoverpa zea (Bod.). Foram obtidos os valores de danos médios da lagarta-da-espiga de 1,14 cm de comprimento na espiga determinado pela escala de Widstrom e coeficiente de variação experimental (CVE) de 23,4%. Dos parâmetros genéticos avaliados, a estimativa de herdabilidade (h²) foi de 6%, variância genética (VG) de 0,0015 cm² e variância fenotípica (VF) de 0,025 cm² para danos de H. zea. No entanto, o comprimento da ponta da bráctea e compactação da bráctea alcançaram resultados de herdabilidade de 75% e 72% respectivamente. Essa sub-população de milho apresenta variabilidade genética suficiente para utilização em programas de melhoramento, sendo que a resistência à lagarta-da-espiga pode ser obtida através da melhoria dos caracteres morfológicos diretamente relacionados à praga, como a compactação e comprimento da bráctea.
Resumo:
O objetivo deste trabalho foi obter estimativas de herdabilidades, correlações genéticas, tendências genéticas e correlações de rank dos touros, para os pesos aos 8, 12, 18 e 24 meses de idade, no rebanho Guzerá do Campus da UNESP, Ilha Solteira, SP. As herdabilidades e os valores genéticos dos animais foram estimados por modelo animal, usando o programa computacional MTDFREML. As correlações genéticas (Pearson) e de rank dos touros (Spearman) foram obtidas pelo procedimento CORR do SAS, utilizando os valores genéticos dos animais, enquanto as tendências genéticas foram calculadas pelo procedimento REG do SAS, utilizando a média anual dos referidos valores genéticos. O modelo estatístico para a análise genética incluiu os efeitos fixos de grupo contemporâneo e a covariável idade da vaca ao parto (efeitos linear e quadrático), e os efeitos aleatórios genético aditivo direto, genético aditivo materno, de ambiente permanente da vaca e residual. As estimativas obtidas para a herdabilidade direta foram 0,14; 0,08; 0,08 e 0,13 e para materna, 0,01; 0,02; 0,02 e 0,05, respectivamente, para os pesos aos 8, 12, 18 e 24 meses de idade. As estimativas dos coeficientes de correlação genética foram positivas e de alta magnitude entre todos os pesos estudados. As tendências genéticas anuais foram baixas e significativas apenas para os pesos aos 8 e 18 meses de idade. As correlações de rank dos touros foram moderadas e significativas, implicando em razoável manutenção de posição de classificação dos touros, quando se comparam, dois a dois, os pesos estudados.
Resumo:
The objective of this study was to elucidate population fluctuations of spider and ant species in forest fragments and adjacent soybean and corn crops under no-tillage and conventional tillage systems, and their correlations with meteorological factors. From Nov 2004 to Apr 2007 sampling of these arthropods at Guaira, São Paulo state was done biweekly during the cropping season and monthly during the periods between crops. To obtain samples at each experimental site, pitfall traps were distributed in 2 transects of 200 m of which 100 m was in the crop, and 100 m was in the forest fragment. Temperature and rainfall were found to have major impacts on fluctuations in population densities of ants of the genus, Pheidole, in soybean and corn crops both grown with conventional tillage and no tillage systems.
Resumo:
Avaliou-se a pressão intra-ocular (PIO) e estimaram-se as correlações entre PIO e pressão de dióxido de carbono (PaCO2) e pH arterial de cinco caracarás (Caracara plancus), anestesiados com isofluorano (ISO) ou sevofluorano (SEV). Valores basais da PIO foram aferidos em ambos os olhos (M0). Cateterizou-se previamente a artéria braquial para obtenção de parâmetros hemogasométricos e cardiorrespiratórios. Anestesia foi induzida com ISO a 5V% e mantida por 40 minutos com 2,5V%. PIO e amostras de sangue foram avaliadas em diferentes momentos até o final do procedimento. Após recuperação, uma segunda anestesia foi realizada com SEV a 6% e mantida com 3,5%. Os parâmetros foram aferidos nos mesmos momentos estabelecidos previamente. A PIO decresceu significativamente (P=0,012) de M0 em todos os momentos e não houve diferença estatística entre ISO e SEV. Correlações significativas entre PIO e PaCO2 e entre PIO e pH sangüíneo foram observadas apenas para a anestesia com SEV. O pH sangüíneo decresceu paralelamente a PIO, enquanto a PaCO2 aumentou, em carcarás anestesiados com isofluorano e sevofluorano.
Resumo:
It is reasonable to assume that the knowledge of suckling behaviour contributes to optimal management and selection of beef cattle. However, there is little information about suckling behaviour of some beef cattle breeds. The aim of this study was to describe the suckling behaviour of two zebu (Bos indicus) and one criollo (Bos taurus) breeds, analysing the potential effects of breed and some environmental factors on suckling frequency and duration. Forty cows, 17 Nelore, 14 Gir (both zebu) and 9 Caracu (criollo) were bred in a diallelic crossing design. The cows and resulting calves were kept on pasture from birth to weaning. Their behaviour was recorded weekly during daylight. Three behavioural traits were considered: number of suckling meals (NSM), duration of each suckling meal (DSM) and total suckling duration (TSD). Allosuckling was not observed. The calves suckled at any time during the daylight and the overall means were: NSM = 2.57 +/- 0.05 meals/12 h (from back transformed data), DSM = 9.25 +/- 0.11 min/suckling meal and TSD = 23.76 +/- 0.47 min/12 h. There was an effect of dam's breed on NSM and DSM; the calf's genetic group within breed of cow influenced NSM and TSD when the dams were from the Nelore breed. The age of calf had significant effects on all traits. Males averaged higher NSM and TSD (2.60 +/- 0.03 meals and 25.05 +/- 1.37 min/12 h, respectively) than females (2.12 +/- 0.04 meals and 21.51 +/- 1.55 min/12 h, respectively). The differences in suckling behaviour seem to be produced by a complex combination of genetic and environmental factors, which result in a particular behavioural relationship within mother-offspring pairs. (c) 2006 Elsevier B.V. All rights reserved.