947 resultados para fuel cell, membrane, proton conducting
Resumo:
Propulsion and power generation by bare electrodynamic tethers are revisited in a unified way and issues and constraints are addressed. In comparing electrodynamic tethers, which do not use propellant, with other propellantconsuming systems, mission duration is a discriminator that defines crossover points for systems with equal initial masses. Bare tethers operating in low Earth orbit can be more competitive than optimum ion thrusters in missions exceeding two-three days for orbital deboost and three weeks for boosting operations. If the tether produces useful onboard power during deboost, the crossover point reaches to about 10 days. Power generation by means of a bare electrodynamic tether in combination with chemical propulsion to maintain orbital altitude of the system is more efficient than use of the same chemicals (liquid hydrogen and liquid oxygen) in a fuel cell to produce power for missions longer than one week. Issues associated with tether temperature, bowing, deployment, and arcing are also discussed. Heating/cooling rates reach about 4 K/s for a 0.05-mm-thick tape and a fraction of Kelvin/second for the ProSEDS (0.6-mm-radius) wire; under dominant ohmic effects, temperatures areover200K (night) and 380 K (day) for the tape and 320 and 415 K for that wire. Tether applications other than propulsion and power are briefly discussed.
Resumo:
The decision to select the most suitable type of energy storage system for an electric vehicle is always difficult, since many conditionings must be taken into account. Sometimes, this study can be made by means of complex mathematical models which represent the behavior of a battery, ultracapacitor or some other devices. However, these models are usually too dependent on parameters that are not easily available, which usually results in nonrealistic results. Besides, the more accurate the model, the more specific it needs to be, which becomes an issue when comparing systems of different nature. This paper proposes a practical methodology to compare different energy storage technologies. This is done by means of a linear approach of an equivalent circuit based on laboratory tests. Via these tests, the internal resistance and the self-discharge rate are evaluated, making it possible to compare different energy storage systems regardless their technology. Rather simple testing equipment is sufficient to give a comparative idea of the differences between each system, concerning issues such as efficiency, heating and self-discharge, when operating under a certain scenario. The proposed methodology is applied to four energy storage systems of different nature for the sake of illustration.
Resumo:
The endothelial isoform of NO synthase (eNOS) is targeted to sphingolipid-enriched signal-transducing microdomains in the plasma membrane termed caveolae. Among the caveolae-targeted sphingolipids are the ceramides, a class of acylated sphingosine compounds that have been implicated in diverse cellular responses. We have explored the role of ceramide analogues in eNOS signaling in cultured bovine aortic endothelial cells (BAEC). Addition of the ceramide analogue N-acetylsphingosine (C2-ceramide; 5 μM) to intact BAEC leads to a significant increase in NO synthase activity (assayed by using the fluorescent indicator 4,5-diaminofluorescein) and translocation of eNOS from the endothelial cell membrane to intracellular sites (measured by using quantitative immunofluorescence techniques); the biologically inactive ceramide N-acetyldihydrosphingosine is entirely without effect. C2-ceramide-induced eNOS activation and translocation are unaffected by the intracellular calcium chelator 1,2-bis-o-aminophenoxyethane-N,N,N′,N′-tetraacetic acid (BAPTA). Using the calcium-specific fluorescent indicator fluo-3, we also found that C2-ceramide activation of eNOS is unaccompanied by a drug-induced increase in intracellular calcium. These findings stand in sharp contrast to the mechanism by which bradykinin, estradiol, and other mediators acutely activate eNOS, in which a rapid, agonist-promoted increase in intracellular calcium is required. Finally, we show that treatment of BAEC with bradykinin causes a significant increase in cellular ceramide content; the response to bradykinin has an EC50 of 3 nM and is blocked by the bradykinin B2-receptor antagonist HOE140. Bradykinin-induced ceramide generation could represent a mechanism for longer-term regulation of eNOS activity. Our results suggest that ceramide functions independently of Ca2+-regulated pathways to promote activation and translocation of eNOS, and that this lipid mediator may represent a physiological regulator of eNOS in vascular endothelial cells.
Resumo:
Salt and water secretion from intestinal epithelia requires enhancement of anion permeability across the apical membrane of Cl− secreting cells lining the crypt, the secretory gland of the intestine. Paneth cells located at the base of the small intestinal crypt release enteric defensins (cryptdins) apically into the lumen. Because cryptdins are homologs of molecules known to form anion conductive pores in phospholipid bilayers, we tested whether these endogenous antimicrobial peptides could act as soluble inducers of channel-like activity when applied to apical membranes of intestinal Cl− secreting epithelial cells in culture. Of the six peptides tested, cryptdins 2 and 3 stimulated Cl− secretion from polarized monolayers of human intestinal T84 cells. The response was reversible and dose dependent. In contrast, cryptdins 1, 4, 5, and 6 lacked this activity, demonstrating that Paneth cell defensins with very similar primary structures may exhibit a high degree of specificity in their capacity to elicit Cl− secretion. The secretory response was not inhibited by pretreatment with 8-phenyltheophyline (1 μM), or dependent on a concomitant rise in intracellular cAMP or cGMP, indicating that the apically located adenosine and guanylin receptors were not involved. On the other hand, cryptdin 3 elicited a secretory response that correlated with the establishment of an apically located anion conductive channel permeable to carboxyfluorescein. Thus cryptdins 2 and 3 can selectively permeabilize the apical cell membrane of epithelial cells in culture to elicit a physiologic Cl− secretory response. These data define the capability of cryptdins 2 and 3 to function as novel intestinal secretagogues, and suggest a previously undescribed mechanism of paracrine signaling that in vivo may involve the reversible formation of ion conductive channels by peptides released into the crypt microenvironment.
Resumo:
Myofibril formation was visualized in cultured live cardiomyocytes that were transfected with plasmids expressing green fluorescent protein (GFP) linked to the Z-band protein, α-actinin. The expression of this fluorescent protein provided an in vivo label for structures containing α-actinin. The GFP–α-actinin fusion protein was incorporated into Z-bands, intercalated discs, and attachment plaques, as well as into the punctate aggregates, or Z-bodies, that are thought to be the precursors of Z-bands. Observations of live cells over several days in culture permitted us to test aspects of several theories of myofibril assembly that had been proposed previously based on the study of fixed cells. Fine fibrils, called premyofibrils, that formed de novo at the spreading edges of cardiomyocytes, contained punctate concentrations of α-actinin, termed Z-bodies. The punctate Z-bodies grew and aligned with Z-bodies in adjacent fibrils. With increasing time, adjacent fibrils and Z-bodies appeared to fuse and form mature myofibrils and Z-bands in cytoplasmic regions where the linear arrays of Z-bodies had been. These new myofibrils became aligned with existing myofibrils at their Z-bands to form myofibrils that spanned the length of the spread cell. These results are consistent with a model that postulates that the fibrils that form de novo near the cell membrane are premyofibrils—i.e., the precursors of mature myofibrils.
Resumo:
Dendritic spines receive the vast majority of excitatory synaptic contacts in the mammalian brain and are presumed to contain machinery for the integration of various signal transduction pathways. Protein phosphatase 1 (PP1) is greatly enriched in dendritic spines and has been implicated in both the regulation of ionic conductances and long-term synaptic plasticity. The molecular mechanism whereby PP1 is localized to spines is unknown. We have now characterized a novel protein that forms a complex with the catalytic subunit of PP1 and is a potent modulator of PP1 enzymatic activity in vitro. Within the brain this protein displays a remarkably distinct localization to the heads of dendritic spines and has therefore been named spinophilin. Spinophilin has the properties expected of a scaffolding protein localized to the cell membrane and contains a single consensus sequence in PSD95/DLG/zo-1, which implies cross-linking of PP1 to transmembrane protein complexes. We propose that spinophilin represents a novel targeting subunit for PP1, which directs the enzyme to those substrates in the dendritic spine compartment, e.g., neurotransmitter receptors, which mediate the regulation of synaptic function by PP1.
Resumo:
In a Hungarian family with triosephosphate isomerase (TPI) deficiency, two compound heterozygote brothers were found with the same severe decrease in TPI activity, but only one of them had the classical symptoms. In search for the pathogenesis of the differing phenotype of the same genotypic TPI deficiency, an increase in red cell membrane fluidity was found. There were roughly 100% and 30% more 16:0/20:4 and 18:0/20:4 diacyl-phosphatidylcholine species in erythrocytes from the two TPI-deficient brothers than in the probes from healthy controls. The activities of acethylcholinesterase and calmodulin induced Ca2+ ATPase were significantly enhanced in erythrocytes from the propositus as compared with those of the neurologically symptom-free brother and other members of the TPI-deficient family as well as to those from healthy controls. Both enzymes are crucially involved in the function of nerve cells. The observed differences in membrane fluidity and enzyme activities between the erythrocytes from the phenotypically differing TPI-deficient brothers underline the importance of investigations into the effect of biophysical changes in the lipid environment of the membrane proteins on the development of disseminated focal neurological disorders of unknown pathogenic origin.
Resumo:
Structural protein 4.1 was first characterized as an important 80-kDa protein in the mature red cell membrane skeleton. It is now known to be a member of a family of protein isoforms detected at diverse intracellular sites in many nucleated mammalian cells. We recently reported that protein 4.1 isoforms are present at interphase in nuclear matrix and are rearranged during the cell cycle. Here we report that protein 4.1 epitopes are present in centrosomes of human and murine cells and are detected by using affinity-purified antibodies specific for 80-kDa red cell 4.1 and for 4.1 peptides. Immunofluorescence, by both conventional and confocal microscopy, showed that protein 4.1 epitopes localized in the pericentriolar region. Protein 4.1 epitopes remained in centrosomes after extraction of cells with detergent, salt, and DNase. Higher resolution electron microscopy of detergent-extracted cell whole mounts showed centrosomal protein 4.1 epitopes distributed along centriolar cylinders and on pericentriolar fibers, at least some of which constitute the filamentous network surrounding each centriole. Double-label electron microscopy showed that protein 4.1 epitopes were predominately localized in regions also occupied by epitopes for centrosome-specific autoimmune serum 5051 but were not found on microtubules. Our results suggest that protein 4.1 is an integral component of centrosome structure, in which it may play an important role in centrosome function during cell division and organization of cellular architecture.
Resumo:
In a number of clinical circumstances it would be desirable to artificially conceal cellular antigenic determinants to permit survival of heterologous donor cells. A case in point is the problem encountered in transfusions of patients with rare blood types or chronically transfused patients who become allosensitized to minor blood group determinants. We have tested the possibility that chemical modification of the red blood cell (RBC) membrane might serve to occlude antigenic determinants, thereby minimizing transfusion reactions. To this end, we have covalently bound methoxy(polyethylene glycol) (mPEG) to the surface of mammalian RBC via cyanuric chloride coupling. Human RBC treated with this technique lose ABO blood group reactivity as assessed by solution–phase antisera agglutination. In accord with this, we also find a profound decrease in anti-blood group antibody binding. Furthermore, whereas human monocytes avidly phagocytose untreated sheep RBC, mPEG-derivatized sheep RBC are ineffectively phagocytosed. Surprisingly, human and mouse RBC appear unaffected by this covalent modification of the cell membrane. Thus, mPEG-treated RBC are morphologically normal, have normal osmotic fragility, and mPEG-derivatized murine RBC have normal in vivo survival, even following repeated infusions. Finally, in preliminary experiments, mPEG-modified sheep RBC intraperitoneally transfused into mice show significantly improved (up to 360-fold) survival when compared with untreated sheep RBC. We speculate that similar chemical camouflage of intact cells may have significant clinical applications in both transfusion (e.g., allosensitization and autoimmune hemolytic disease) and transplantation (e.g., endothelial cells and pancreatic β cells) medicine.
Resumo:
Antigen recognition in the adaptive immune response by Ig and T-cell antigen receptors (TCRs) is effected through patterned differences in the peptide sequence in the V regions. V-region specificity forms through genetically programmed rearrangement of individual, diversified segmental elements in single somatic cells. Other Ig superfamily members, including natural killer receptors that mediate cell-surface recognition, do not undergo segmental reorganization, and contain type-2 C (C2) domains, which are structurally distinct from the C1 domains found in Ig and TCR. Immunoreceptor tyrosine-based inhibitory motifs that transduce negative regulatory signals through the cell membrane are found in certain natural killer and other cell surface inhibitory receptors, but not in Ig and TCR. In this study, we employ a genomic approach by using the pufferfish (Spheroides nephelus) to characterize a nonrearranging novel immune-type receptor gene family. Twenty-six different nonrearranging genes, which each encode highly diversified V as well as a V-like C2 extracellular domain, a transmembrane region, and in most instances, an immunoreceptor tyrosine-based inhibitory motif-containing cytoplasmic tail, are identified in an ≈113 kb P1 artificial chromosome insert. The presence in novel immune-type receptor genes of V regions that are related closely to those found in Ig and TCR as well as regulatory motifs that are characteristic of inhibitory receptors implies a heretofore unrecognized link between known receptors that mediate adaptive and innate immune functions.
Resumo:
Because ascorbic acid (AA) is concentrated in synaptic vesicles containing glutamic acid, we hypothesized that AA might act as a neurotransmitter. Because AA is an antioxidant, it might therefore inhibit nitric oxidergic (NOergic) activation of luteinizing hormone-releasing hormone (LH-RH) release from medial basal hypothalamic explants by chemically reducing NO. Cell membrane depolarization induced by increased potassium concentration [K+] increased medium concentrations of both AA and LH-RH. An inhibitor of NO synthase (NOS), NG-monomethyl-l-arginine (NMMA), prevented the increase in medium concentrations of AA and LH-RH induced by high [K+], suggesting that NO mediates release of both AA and LH-RH. Calcium-free medium blocked not only the increase in AA in the medium but also the release of LH-RH. Sodium nitroprusside, which releases NO, stimulated LH-RH release and decreased the concentration of AA in the incubation medium, presumably because the NO released oxidized AA to dehydro-AA. AA (10−5 to 10−3 M) had no effect on basal LH-RH release but completely blocked high [K+]- and nitroprusside-induced LH-RH release. N-Methyl-d-aspartic acid (NMDA), which mimics the action of the excitatory amino acid neurotransmitter glutamic acid, releases LH-RH by releasing NO. AA (10−5 to 10−3 M) inhibited the LH-RH-releasing action of NMDA. AA may be an inhibitory neurotransmitter that blocks NOergic stimulation of LH-RH release by chemically reducing the NO released by the NOergic neurons.
Resumo:
Development of protrusions in the cell is indispensable in the process of cell motility. Membrane protrusion has long been suggested to occur as a result of actin polymerization immediately beneath the cell membrane at the leading edge, but elucidation of the mechanism is insufficient because of the complexity of the cell. To study the mechanism, we prepared giant liposomes containing monomeric actin (100 or 200 μM) and introduced KCl into individual liposomes by an electroporation technique. On the electroporation, the giant liposomes deformed. Most importantly, protrusive structure grew from the liposomes containing 200 μM actin at rates (ranging from 0.3 to 0.7 μm/s) similar to those obtained in the cell. The deformation occurred in a time range (30 ∼ 100 s) similar to that of actin polymerization monitored in a cuvette (ca. 50 s). Concomitant with deformation, Brownian motion of micron-sized particles entrapped in the liposomes almost ceased. From these observations, we conclude that actin polymerization in the liposomes caused the protrusive formation.
Resumo:
Many biological processes require proteins to undergo conformational changes at the surface of membranes. For example, some precursor proteins unfold at the surface of mitochondria and chloroplasts before translocation into the organelles, and toxins such as colicin A unfold to the molten globule state at bacterial surfaces before inserting into the cell membrane. It is commonly thought that the membrane surfaces and the associated protein machinery destabilize the substrate proteins and that this effect is required for membrane insertion or translocation. One of the best characterized translocation processes is protein import into mitochondria. By measuring the contributions of individual interactions within a model protein to its stability at the mitochondrial surface and in free solution, we show here that the mitochondrial surface neither induces the molten globule state in this protein nor preferentially destabilizes any type of interaction (e.g., hydrogen bonds, nonpolar, etc.) within the protein. Because it is not possible to measure absolute protein stability at the surface of mitochondria, we determined the stability of a tightly associated protein–protein complex at the mitochondrial import site as a model of the stability of a protein. We found the binding constants of the protein–protein complex at the mitochondrial surface and in free solution to be identical. Our results demonstrate that the mitochondrial surface does not destabilize importing precursor proteins in its vicinity.
Resumo:
We have identified isoforms of dystrophin and utrophin, a dystrophin homologue, expressed in astrocytes and examined their expression patterns during dibutyryl-cAMP (dBcAMP)-induced morphological differentiation of astrocytes. Immunoblot and immunocytochemical analyses showed that full-length-type dystrophin (427 kDa), utrophin (395 kDa), and Dp71 (75 kDa), a small-type dystrophin isoform, were coexpressed in cultured nondifferentiated rat brain astrocytes and were found to be located in the cell membrane. During morphological differentiation of the astrocytes induced by 1 mM dBcAMP, the amount of Dp71 markedly increased, whereas that of dystrophin and utrophin decreased. Northern blot analyses revealed that dBcAMP regulates the mRNA levels of Dp71 and dystrophin but not that of utrophin. dBcAMP slightly increased the amount of the β-dystroglycan responsible for anchoring dystrophin isoforms and utrophin to the cell membrane. Immunocytochemical analyses showed that most utrophin was observed in the cytoplasmic area during astrocyte differentiation, whereas Dp71 was found along the cell membrane of the differentiated astrocytes. These findings suggest that most of the dystrophin/utrophin-dystroglycan complex on cell membrane in cultured astrocytes was replaced by the Dp71-dystroglycan complex during morphological differentiation. The cell biological roles of Dp71 are discussed.
Resumo:
The acrosome reaction of spermatozoa is a complex, calcium-dependent, regulated exocytosis. Fusion at multiple sites between the outer acrosomal membrane and the cell membrane causes the release of the acrosomal contents and the loss of the membranes surrounding the acrosome. However, very little is known about the molecules that mediate and regulate this unique fusion process. Here, we show that N-ethylmaleimide-sensitive factor (NSF), a protein essential for most fusion events, is present in the acrosome of several mammalian spermatozoa. Moreover, we demonstrate that calcium-dependent exocytosis of permeabilized sperm requires active NSF. Previously, we have shown that the addition of the active (GTP-bound) form of the small GTPase Rab3A triggers exocytosis in permeabilized spermatozoa. In the present report we show that Rab3A is necessary for calcium-dependent exocytosis. The activation of Rab3A protects NSF from N-ethylmaleimide inhibition and precludes the exchange of the endogenous protein with recombinant dominant negative mutants of NSF. Furthermore, Rab3A activation of acrosomal exocytosis requires active NSF. Our results suggest that, upon calcium stimulation, Rab3A switches to its active GTP-bound form, triggering the formation of a protein complex in which NSF is protected. This process is suggested to be an essential part of the molecular mechanism of membrane fusion leading to the release of the acrosomal contents.