941 resultados para formula scoring
Resumo:
Ordered double perovskite oxides of the general formula A2BB′O6 have been known for several decades to have interesting electronic and magnetic properties. However, a recent report of a spectacular negative magnetoresistance effect in a specific member of this family, namely Sr2FeMoO6, has brought this class of compounds under intense scrutiny. It is now believed that the origin of the magnetism in this class of compounds is based on a novel kinetically-driven mechanism. This new mechanism is also likely to be responsible for the unusually high temperature ferromagnetism in several other systems, such as dilute magnetic semiconductors, as well as in various half-metallic ferromagnetic systems, such as Heussler alloys.
Resumo:
Membrane proteins are involved in a number of important biological functions. Yet, they are poorly understood from the structure and folding point of view. The external environment being drastically different from that of globular proteins, the intra-protein interactions in membrane proteins are also expected to be different. Hence, statistical potentials representing the features of inter-residue interactions based exclusively on the structures of membrane proteins are much needed. Currently, a reasonable number of structures are available, making it possible to undertake such an analysis on membrane proteins. In this study we have examined the inter-residue interaction propensities of amino acids in the membrane spanning regions of the alpha-helical membrane (HM) proteins. Recently we have shown that valuable information can be obtained on globular proteins by the evaluation of the pair-wise interactions of amino acids by classifying them into different structural environments, based on factors such as the secondary structure or the number of contacts that a residue can make. Here we have explored the possible ways of classifying the intra-protein environment of HM proteins and have developed scoring functions based on different classification schemes. On evaluation of different schemes, we find that the scheme which classifies amino acids to different intra-contact environment is the most promising one. Based on this classification scheme, we also redefine the hydrophobicity scale of amino acids in HM proteins.
Resumo:
A cobalt oxalato-squarate of the formula [Co-2(C4O4)(C2O4)(C3N2H4)(2)], containing a ligated amine has been synthesized hydrothermally and its structure determined by single crystal X-ray diffraction. The compound crystallizes in the orthorhombic space group P2(1)2(1)2 with a = 18.3845(8) Angstrom, b = 5.7884(3) Angstrom, c = 7.2598(4) Angstrom, V = 772.56(7)Angstrom(3) and Z = 4. It has a layered structure where two-dimensional sheets are formed by the connectivity of the squarate and the oxalate units with the cobalt centres, with the ligating amine molecules protruding out from the layers. (C) 2003 Editions scientifiques et medicales Elsevier SAS. All rights reserved.
Resumo:
A fundamental task in bioinformatics involves a transfer of knowledge from one protein molecule onto another by way of recognizing similarities. Such similarities are obtained at different levels, that of sequence, whole fold, or important substructures. Comparison of binding sites is important to understand functional similarities among the proteins and also to understand drug cross-reactivities. Current methods in literature have their own merits and demerits, warranting exploration of newer concepts and algorithms, especially for large-scale comparisons and for obtaining accurate residue-wise mappings. Here, we report the development of a new algorithm, PocketAlign, for obtaining structural superpositions of binding sites. The software is available as a web-service at http://proline.physicslisc.emetin/pocketalign/. The algorithm encodes shape descriptors in the form of geometric perspectives, supplemented by chemical group classification. The shape descriptor considers several perspectives with each residue as the focus and captures relative distribution of residues around it in a given site. Residue-wise pairings are computed by comparing the set of perspectives of the first site with that of the second, followed by a greedy approach that incrementally combines residue pairings into a mapping. The mappings in different frames are then evaluated by different metrics encoding the extent of alignment of individual geometric perspectives. Different initial seed alignments are computed, each subsequently extended by detecting consequential atomic alignments in a three-dimensional grid, and the best 500 stored in a database. Alignments are then ranked, and the top scoring alignments reported, which are then streamed into Pymol for visualization and analyses. The method is validated for accuracy and sensitivity and benchmarked against existing methods. An advantage of PocketAlign, as compared to some of the existing tools available for binding site comparison in literature, is that it explores different schemes for identifying an alignment thus has a better potential to capture similarities in ligand recognition abilities. PocketAlign, by finding a detailed alignment of a pair of sites, provides insights as to why two sites are similar and which set of residues and atoms contribute to the similarity.
Probing the mobility of lithium in LISICON: Li+/H+ exchange studies in Li2ZnGeO4 and Li2+2xZn1-xGeO4
Resumo:
We investigated Li+/H+ exchange in the lithium ion conductors (LISICONS) [ Li2+2xZn1-xGeO4; x = 0.5 ( I) and x = 0.75 (II)] and their parent, gamma-Li2ZnGeO4. Facile exchange of approximately 2x lithium ions per formula unit occurs with both the LISICONS in dilute acetic acid, while the parent material does not exhibit an obvious Li+/H+ exchange under the same conditions. The results can be understood in terms of lithium ion distribution in the crystal structures: the parent Li2ZnGeO4, where all the lithium ions form part of the tetrahedral framework structure, does not exhibit a ready Li+/H+ exchange; LISICONS, where lithium ions are distributed between framework ( tetrahedral) and nonframework sites, undergo a facile Li+/H+ exchange of the nonframework site lithium ions. Accordingly, Li+/H+ exchange in dilute aqueous acetic acid provides a convenient probe to distinguish between the mobile and the immobile lithium ions in lithium ion conductors.
Resumo:
The thiocarbohydrazone Schiff-base ligand with a nitrogen and sulphur donor was synthesized through condensation of pyridine-2-carbaldehyde and thiocarbohydrazide. Schiff-base ligands have the ability to conjugate with metal salts. A series of metal complexes with a general formula [MCl(2)(H(2)L)]center dot nH(2)O (M=Ni, Co, Cu and Zn) were synthesized by forming complexes of the N(1),N5-bis[pyridine-2-methylene]thiocarbohydrazone (H2L) Schiff-base ligand. These metal complexes and ligand were characterized by using ultraviolet-visible (UV-Vis), Fourier Transform Infrared (FT-IR), (1)H and (13)C NMR spectroscopy and mass spectroscopy, physicochemical characterization, CHNS and conductivity. The biological activity of the synthesized ligand was investigated by using Escherichia coli DNA as target. The DNA interaction of the synthesized ligand and complexes on E. coli plasmid DNA was investigated in the aqueous medium by UV-Vis spectroscopy and the binding constant (K(b)) was calculated. The DNA binding studies showed that the metal complexes had an improved interaction due to trans-geometrical isomers of the complexes than ligand isomers in cis-positions. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
New complexes of lanthanide perchlorates with di-t-butyl amides of di, tri and tetraglycolic acids have been synthesised. The complexes have the general formula Ln(DiGA)3(ClO4)3; Ln(TriGA)2 (ClO4)3 and Ln(TetGA)2 (C1O4)3, where Ln = La-Yb and Y and DiGA = N,N′, di-t-butyl diglycolamide, TriGA N,N′, di-t-butyl triglycolamide and TetGA = N,N′ di-t-butyl tetraglycolamide, respectively. The complexes have been characterized by analysis, electrolytic conductance, infrared,1H and13C nuclear magnetic resonance and electronic spectral data.Infrared spectra indicate the coordination of all the available ether oxygens and the amide carbonyls in each of the ligands, to the metal ions. IR and conductance data show that the perchlorate groups in all the complexes are ionic.1H and13C NMR data support the IR data regarding the mode of coordination of ligands to the metal ions. Electronic spectral shapes have been interpreted in terms of nine, eight and ten coordination in DiGA, TriGA and TetGA complexes respectively.
Resumo:
The theory of phase formation is generalised for any arbitrary time dependence of nucleation and growth rates. Some sources of this time dependence are time-dependent potential inputs, ohmic drop and the ingestion effect. Particular cases, such as potentiostatic and, especially, linear potential sweep, are worked out for the two limiting cases of nucleation, namely instantaneous and progressive. The ohmic drop is discussed and a procedure for this correction is indicated. Recent results of Angerstein-Kozlowska, Conway and Klinger are critically investigated. Several earlier results are deduced as special cases. Evans' overlap formula is generalised for the time-dependent case and the equivalence between Avrami's and Evans' equations established.
Resumo:
Scanning tunneling microscopy was used to study the surface nanostructure of the epitaxial film Nd2/3Sr1/3MnO3 that shows giant magnetoresistance. The surface morphology of the film consists of a number of overlapping platelets of about 30–35 Å diameter that grow at an angle of 35°–45° to the surface normal. The peak to peak height of the platelets are multiples of the c‐axis lattice parameter of 7.85 Å showing that the growth of the platelets takes place by the layer by layer addition of one formula unit. The mean surface roughness is about 10 Å. In the range of a few microns the film exhibits no defects or dislocations. The film is unstable in ambient atmosphere and tends to get covered by an adsorbate layer. Tip‐surface interactions cause the adsorbate to be dislodged exposing the surface nanostructure. The degradation of the film in real time when imaged in air was recorded. The adsorbates increase the surface roughness of the film.
Resumo:
Temperature dependence of the energy gap and free carrier absorption in a high-quality InAs0.05Sb0.95 single crystal was studied between 90 K and 430 K through the absorption spectra. At this alloy concentration, the room-temperature energy gap was measured to be 0.15 eV. Varshni- and the Bose–Einstein-type fit parameters were obtained from the measured temperature dependence of the energy gap, and the latter gave the zero-temperature gap to be 0.214 eV. It was found that although Weider’s empirical formula for the dependence of the energy gap on temperature and the alloy concentration agrees with the value of the gap at room temperature, it is inaccurate in describing its temperature dependence. From the free carrier absorption measurements, the phonon limited cross section of 7.35×10−16 cm2 at 15 μm was deduced at room temperature.
Resumo:
The design of a three‐stage high‐gain amplifier for laboratory use in audiofrequency investigations is described. Four‐electrode tubes are used as screen‐grid amplifiers and an amplification of the order of 200 per stage is obtained. The inaccuracy of McDonald's formula for calculation of stage‐gain has been pointed out. The gain‐frequency characteristics are given for power as well as voltage amplification. It is shown that extreme care is necessary in the design of shielding to obtain high‐voltage amplification of the order of 120 decibels as obtained in this three‐stage amplifier.
Resumo:
X-ray powder diffraction along with differential thermal analysis carried out on the as-quenched samples in the 3BaO–3TiO2–B2O3 system confirmed their amorphous and glassy nature, respectively. The dielectric constants in the 1 kHz–1 MHz frequency range were measured as a function of temperature (323–748 K). The dielectric constant and loss were found to be frequency independent in the 323–473 K temperature range. The temperature coefficient of dielectric constant was estimated using Havinga’s formula and found to be 16 ppm K−1. The electrical relaxation was rationalized using the electric modulus formalism. The dielectric constant and loss were 17±0.5 and 0.005±0.001, respectively at 323 K in the 1 kHz–1 MHz frequency range which may be of considerable interest to capacitor industry.
Resumo:
Use of some new planes such as the R-x, R2-x (where R represents in the n-dimensional phase space, the radius vector from the origin to any point on the trajectory described by the system) is suggested for analysis of nonlinear systems of any kind. The stability conditions in these planes are given. For easy understanding of the method, the transformation from the phase plane to the R-x, R2-x planes is brought out for second-order systems. In general, while these planes serve as useful as the phase plane, they have proved to be simpler in determining quickly the general behavior of certain classes of second-order nonlinear systems. A chart and a simple formula are suggested to evaluate time easily from the R-x and R2-x trajectories, respectively. A means of solving higher-order nonlinear systems is also illustrated. Finally, a comparative study of the trajectories near singular points on the phase plane and on the new planes is made.
Resumo:
We present a simplified theoretical formulation of the Fowler-Nordheim field emission (FNFE) under magnetic quantization and also in quantum wires of optoelectronic materials on the basis of a newly formulated electron dispersion law in the presence of strong electric field within the framework of k.p formalism taking InAs, InSb, GaAs, Hg(1-x)Cd(x)Te and In(1-x)Ga(x) As(y)P(1-y) lattice matched to InP as examples. The FNFE exhibits oscillations with inverse quantizing magnetic field and electron concentration due to SdH effect and increases with increasing electric field. For quantum wires the FNFE increases with increasing film thickness due to the existence van-Hove singularity and the magnitude of the quantum jumps are not of same height indicating the signature of the band structure of the material concerned. The appearance of the humps of the respective curves is due to the redistribution of the electrons among the quantized energy levels when the quantum numbers corresponding to the highest occupied level changes from one fixed value to the others. Although the field current varies in various manners with all the variables in all the limiting cases as evident from all the curves, the rates of variations are totally band-structure dependent. Under certain limiting conditions, all the results as derived in this paper get transformed in to well known Fowler-Nordheim formula. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
In this paper, we treat some eigenvalue problems in periodically perforated domains and study the asymptotic behaviour of the eigenvalues and the eigenvectors when the number of holes in the domain increases to infinity Using the method of asymptotic expansion, we give explicit formula for the homogenized coefficients and expansion for eigenvalues and eigenvectors. If we denote by ε the size of each hole in the domain, then we obtain the following aysmptotic expansion for the eigenvalues: Dirichlet: λε = ε−2 λ + λ0 +O (ε), Stekloff: λε = ελ1 +O (ε2), Neumann: λε = λ0 + ελ1 +O (ε2).Using the method of energy, we prove a theorem of convergence in each case considered here. We briefly study correctors in the case of Neumann eigenvalue problem.