989 resultados para food acquisition
Resumo:
A modelling scheme is described which uses satellite retrieved sea-surface temperature and chlorophyll-a to derive monthly zooplankton biomass estimates in the eastern North Atlantic; this forms part of a bio-physical model of inter-annual variations in the growth and survival of larvae and post-larvae of mackerel (Scomber scombrus). The temperature and chlorophyll data are incorporated first to model copepod (Calanus) egg production rates. Egg production is then converted to available food using distribution data from the Continuous Plankton Recorder (CPR) Survey, observed population biomass per unit daily egg production and the proportion of the larval mackerel diet comprising Calanus. Results are validated in comparison with field observations of zooplankton biomass. The principal benefit of the modelling scheme is the ability to use the combination of broad scale coverage and fine scale temporal and spatial variability of satellite data as driving forces in the model; weaknesses are the simplicity of the egg production model and the broad-scale generalizations assumed in the raising factors to convert egg production to biomass.
Resumo:
A study was carried out in June/July 1996 in the River Po outflow in the northern Adriatic to investigate spawning of anchovy Engraulis encrasicolus and survival of larvae in relation to food availability and wind mixing. Hydrographic- and bongo net sampling was carried out on 2 grid surveys; one after a period of low winds and settled weather, and the other after an intervening period of strong winds, which resulted in a decrease in water column stratification. The spawning areas of anchovy and the larval distributions were associated with the river outflow plume (most clearly on the second survey grid, after the period of higher winds). Potential food particles for anchovy larvae, primarily copepod nauplii and copepodite stages, were also concentrated in the area influenced by the river outflow. Although there was a nearly 50% reduction in the mean water column abundance of potential food particles between the 2 survey grids, mostly due to a decline in abundance outside the immediate river plume area, there was no significant change in mortality of anchovy larvae between the 2 grids; the exponential decline in numbers of eggs and larvae to 10 mm in length being equivalent to overall mortality rates of 43.2%/d on the first survey and 44.7%/d on the second. The resilience of larval survival under potentially less favourable feeding conditions, following the period of wind mixing, was ascribed, in part, to the maintenance of local water column stratification by the superficial low salinity input from the River Po. This stratification in the immediate outflow area was associated with the presence of concentrated layers of potential food particles (typically >50 particles/L and 1.5 to 2.8 times the mean water column abundance) in the upper 10 m of the water column, coincident with peak numbers of anchovy larvae. However, since there was no evidence for lower larval survival in areas, less influenced by the immediate river outflow plume, a simple direct relationship between enhanced water column stability, improved feeding conditions and larval survival was not supported.
Resumo:
The digestion of natural, mainly crustacean zooplankton, by different age groups of turbot Scophthalmus maximus larvae was evaluated by comparisons of visual appearance, dry weight and carbon and nitrogen content of fresh food organisms with material recovered from faeces. Visually, the degree of digestion of food particles ranged from no discernible change of lamellibranch larvae, copepod eggs, intact copepod faecal pellets and some phytoplankton species, to varying degrees of removal of body constituents in copepods, cladocerans and decapod zoea. For crustaceans, the proportion of body constituents removed was related to the size and construction of their apparently indigestible exoskeleton. Uppon defaecation larger organisms showed the greatest percentage loss in dry weight and carbon. A high percentage of nitrogen was extracted from all organisms.
Resumo:
1. Abundant mid-trophic pelagic fish often play a central role in marine ecosystems, both as links between zooplankton and top predators and as important fishery targets. In the North Sea, the lesser sandeel occupies this position, being the main prey of many bird, mammal and fish predators and the target of a major industrial fishery. However, since 2003, sandeel landings have decreased by > 50%, and many sandeel-dependent seabirds experienced breeding failures in 2004. 2. Despite the major economic implications, current understanding of the regulation of key constituents of this ecosystem is poor. Sandeel abundance may be regulated 'bottom-up' by food abundance, often thought to be under climatic control, or 'top-down' by natural or fishery predation. We tested predictions from these two hypotheses by combining unique long-term data sets (1973–2003) on seabird breeding productivity from the Isle of May, SE Scotland, and plankton and fish larvae from the Continuous Plankton Recorder survey. We also tested whether seabird breeding productivity was more tightly linked to sandeel biomass or quality (size) of individual fish. 3. The biomass of larval sandeels increased two- to threefold over the study period and was positively associated with proxies of the abundance of their plankton prey. Breeding productivity of four seabirds bringing multiple prey items to their offspring was positively related to sandeel larval biomass with a 1-year lag, indicating dependence on 1-year-old fish, but in one species bringing individual fish it was strongly associated with the size of adult sandeels. 4. These links are consistent with bottom-up ecosystem regulation and, with evidence from previous studies, indicate how climate-driven changes in plankton communities can affect top predators and potentially human fisheries through the dynamics of key mid-trophic fish. However, the failing recruitment to adult sandeel stocks and the exceptionally low seabird breeding productivity in 2004 were not associated with low sandeel larval biomass in 2003, so other mechanisms (e.g. predation, lack of suitable food after metamorphosis) must have been important in this case. Understanding ecosystem regulation is extremely important for predicting the fate of keystone species, such as sandeels, and their predators.
Resumo:
Five species of bresilioid shrimp were investigated at seven hydrothermal sites on the Mid-Atlantic Ridge: Menez Gwen, Lucky Strike, Rainbow, Broken Spur, TAG, Snake Pit and Logatchev. Samples were prepared for analysis of stable isotopes, elemental composition and lipids. Shrimp behaviour was observed from the submersible ‘Alvin’ and in the laboratory aboard RV ‘Atlantis’. The distribution and zonation of the shrimp species was recorded. Juvenile shrimp of all species arrive at the vents carrying reserves of photosynthetic origin, built-up in the pelagic larval stages. These reserves are used while the shrimp metamorphose to the adult form and, in Rimicaris exoculata and Chorocaris chacei, while they develop epibiotic bacteria supporting structures, the modified mouthparts and the inside of the carapace. The main food of adult R. exoculata is filamentous bacteria that grow on these structures. The intermediate sizes of C. chacei also feed on such bacteria, but the final stage gets some food by scavenging or predation. Mirocaris species scavenge diverse sources; they are not trophically dependent on either R. exoculata or mussels. Adults of Alvinocaris markensis are predators of other vent animals, including R. exoculata. The dense swarms of R. exoculata, with their exosymbionts, can be compared to endosymbiont-containing animals such as Bathymodiolus and the vestimentiferan tube-worms of the Pacific vents. Such associations, whether endo- or ectosymbiotic, may be necessary for the development of flourishing communities at hydrothermal vents.
Relationships Between Seston Available Food And Feeding-Activity In The Common Mussel Mytilus-Edulis
Resumo:
The feeding and metabolic rates of Mytilus edulis L. of different body sizes were measured in response to changes in particle concentrations ranging from 2 to 350 mg l-1. Rates of oxygen consumption were not significantly affected by changes in seston concentration, whereas clearance rates gradually declined with increasing particle concentration. Pseudofaeces production was initiated at relatively low seston concentrations (<5 mg l-1). Marked seasonal changes were recorded in the composition of suspended particulates (seston) in an estuary in south-west England. Total seston was sampled at frequent intervals throughout an annual cycle and analysed in terms of: particle size-frequency distributions, total dry weight (mg l-1), inorganic content, chlorophyll a, carbohydrate, protein and lipid. The particulate carbohydrate, protein and lipid content provided an estimate of the food content of the seston. The results are discussed in terms of the “food available” to a nonselective suspension feeder, such as M. edulis, during a seasonal cycle. The effect of inorganic silt in suspension was mainly to limit by “dilution” the amount of food material ingested rather than to reduce the amount of material filtered by the mussel. In winter, the food content of the material ingested was 5%, and this increased to 25% during the spring and summer.
Resumo:
Multivariate experiments are used to study the effects of body size, food concentration, and season on the oxygen consumption, ammonia excretion, food assimilation efficiency and filtration rate of Mytilus edulis adults. Food concentrations and season affect both the intercept and the slope of the allometric equation describing oxygen uptake as a function of body size. Multiple regression and response surface techniques are used to describe and illustrate the complex relationship between metabolic rate, ration, season and the body size of M. edulis. Filtration rate has a relatively low weight exponent Q> = 038) and the intercept for the allometric equation is not significantly affected by food concentration, season or acclimation temperatures between 5 and 20 °C. Food assimilation efficiency declines exponentially with increasing food concentration and is dependent on body size at high food levels. The rate of ammonia excretion shows a similar seasonal cycle to that of oxygen consumption. They are both minimal in the autumn/winter and reach a maximum in the spring /summer.