943 resultados para fixed point method
Resumo:
We show that a set of fundamental solutions to the parabolic heat equation, with each element in the set corresponding to a point source located on a given surface with the number of source points being dense on this surface, constitute a linearly independent and dense set with respect to the standard inner product of square integrable functions, both on lateral- and time-boundaries. This result leads naturally to a method of numerically approximating solutions to the parabolic heat equation denoted a method of fundamental solutions (MFS). A discussion around convergence of such an approximation is included.
Resumo:
Oscillometric blood pressure (BP) monitors are currently used to diagnose hypertension both in home and clinical settings. These monitors take BP measurements once every 15 minutes over a 24 hour period and provide a reliable and accurate system that is minimally invasive. Although intermittent cuff measurements have proven to be a good indicator of BP, a continuous BP monitor is highly desirable for the diagnosis of hypertension and other cardiac diseases. However, no such devices currently exist. A novel algorithm has been developed based on the Pulse Transit Time (PTT) method, which would allow non-invasive and continuous BP measurement. PTT is defined as the time it takes the BP wave to propagate from the heart to a specified point on the body. After an initial BP measurement, PTT algorithms can track BP over short periods of time, known as calibration intervals. After this time has elapsed, a new BP measurement is required to recalibrate the algorithm. Using the PhysioNet database as a basis, the new algorithm was developed and tested using 15 patients, each tested 3 times over a period of 30 minutes. The predicted BP of the algorithm was compared to the arterial BP of each patient. It has been established that this new algorithm is capable of tracking BP over 12 minutes without the need for recalibration, using the BHS standard, a 100% improvement over what has been previously identified. The algorithm was incorporated into a new system based on its requirements and was tested using three volunteers. The results mirrored those previously observed, providing accurate BP measurements when a 12 minute calibration interval was used. This new system provides a significant improvement to the existing method allowing BP to be monitored continuously and non-invasively, on a beat-to-beat basis over 24 hours, adding major clinical and diagnostic value.
Resumo:
Since precise linear actuators of a compliant parallel manipulator suffer from their inability to tolerate the transverse motion/load in the multi-axis motion, actuation isolation should be considered in the compliant manipulator design to eliminate the transverse motion at the point of actuation. This paper presents an effective design method for constructing compliant parallel manipulators with actuation isolation, by adding the same number of actuation legs as the number of the DOF (degree of freedom) of the original mechanism. The method is demonstrated by two design case studies, one of which is quantitatively studied by analytical modelling. The modelling results confirm possible inherent issues of the proposed structure design method such as increased primary stiffness, introduced extra parasitic motions and cross-axis coupling motions.
Resumo:
Incorporation of thymidine analogues in replicating DNA, coupled with antibody and fluorophore staining, allows analysis of cell proliferation, but is currently limited to monolayer cultures, fixed cells and end-point assays. We describe a simple microscopy imaging method for live real-time analysis of cell proliferation, S phase progression over several division cycles, effects of anti-proliferative drugs and other applications. It is based on the prominent (~ 1.7-fold) quenching of fluorescence lifetime of a common cell-permeable nuclear stain, Hoechst 33342 upon the incorporation of 5-bromo-2’-deoxyuridine (BrdU) in genomic DNA and detection by fluorescence lifetime imaging microscopy (FLIM). We show that quantitative and accurate FLIM technique allows high-content, multi-parametric dynamic analyses, far superior to the intensity-based imaging. We demonstrate its uses with monolayer cell cultures, complex 3D tissue models of tumor cell spheroids and intestinal organoids, and in physiological study with metformin treatment.
Resumo:
The South Carolina Department of Transportation routinely retains Professional Consulting Engineering firms to provide engineering design and related professional services for the preparation of construction plans or design-build Request for Proposal bid packages for a wide variety of Federal-aid Highway Program roadway and bridge construction projects throughout South Carolina.The purpose of this project is to examine the current process of determining a "Fair and Reasonable" fixed fee for professional service contracts and to evaluate possible alternative methods including practices in other states that may improve the process, particularly in light of the considerable variation in audited overhead rates among consulting firms. In reviewing such alternative methods particular attention will be given to evaluating the potential impact of the method as an incentive to consulting firms to effectively manage their overhead costs.
Resumo:
A method is presented for accurate measurement of spectral flux-reflectance (albedo) in a laboratory, for media with long optical path lengths, such as snow and ice. The approach uses an acrylic hemispheric dome, which, when placed over the surface being studied, serves two functions: (i) it creates an overcast “sky” to illuminate the target surface from all directions within a hemisphere, and (ii) serves as a platform for measuring incident and backscattered spectral radiances, which can be integrated to obtain fluxes. The fluxes are relative measurements and because their ratio is used to determine flux-reflectance, no absolute radiometric calibrations are required. The dome and surface must meet minimum size requirements based on the scattering properties of the surface. This technique is suited for media with long photon path lengths since the backscattered illumination is collected over a large enough area to include photons that reemerge from the domain far from their point of entry because of multiple scattering and small absorption. Comparison between field and laboratory albedo of a portable test surface demonstrates the viability of this method.
Resumo:
Fishing trials with monofilament gill nets and longlines using small hooks were carried out at the same fishing grounds in Cyclades (Aegean Sea) over 1 year. Four sizes of MUSTAD brand, round bent, flatted sea hooks (Quality 2316 DT, numbers 15, 13, 12 and 11) and four mesh sizes of 22, 24, 26 and 28 turn nominal bar length monofilament gill nets were used. Significant differences in the catch size frequency distributions of the two gears were found for four out of five of the most important species caught by both the gears (Diplodus annularis, Diplodus vulgaris, Pagellus erythrinus, Scorpaena porcus and Serranus cabrilla), with longlines catching larger fish and a wider size range than gill nets. Whereas longline catch size frequency distributions for most species for the different hook sizes were generally highly overlapped, suggesting little or no differences in size selectivity, gill net catch size frequency distributions clearly showed size selection, with larger mesh sizes catching larger fish. A variety of models were fitted to the gill net data, with the lognormal providing the best fit in most cases. A maximum likelihood method was also used to estimate the parameters of the logistic model for the longline data. Because of the highly overlapped longline catch size frequency distributions parameters could only be estimated for two species. This study shows that the two static gears have different impacts in terms of size selection. This information will be useful for the more effective management of these small-scale, multi-species and multi-gear fisheries. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Thermoelectric generators (TEGs) are solid-state devices that can be used for the direct conversion between heat and electricity. These devices are an attractive option for generating clean energy from heat. There are two modes of operation for TEGs; constant heat and constant temperature. It is a well-known fact that for constant temperature operation, TEGs have a maximum power point lying at half the open circuit voltage of the TEG, for a particular temperature. This work aimed to investigate the position of the maximum power point for Bismuth Telluride TEGs working under constant heat conditions i.e. the heat supply to the TEG is fixed however the temperature across the TEG can vary depending upon its operating conditions. It was found that for constant heat operation, the maximum power point for a TEG is greater than half the open circuit voltage of the TEG.
Resumo:
The evaluation of the maturation in apple orchards is checked using destructive methods, sampling fruits and analyzing them in the laboratory, making the process slow and expensive. The use of not destructive method to determine fruit maturation in the orchard could accelerate delivery of results and help in determining harvest time, because non-destructive data would allow to verify the maturation on different blocks in the orchard. The aim of this work was to chart fruit maturation in 'Maxi Gala' grafted on two different rootstocks, using destructive and not destructive methods. The non-destructive method used was the portable DA-Meter. The trial was realized at Vacaria, southern Brazillocated 28,44 S and 50,85 W. The samples were harvested on two orchards during the seasons 2014/15 and 2015/16, during six weeks before harvest from January until the second week of February. The sampling was realized in five different points of the orchard, on rootstocks M.9 or Marubakaido with M.9 interstem. Ten-apple samples were collected weekly in each point in the orchard and then evaluated by destructive method (flesh firmness, starch degradation, total soluble solids and acidity) and the not destructive method (DA-Meter). For both seasons, the evolution of the fruit maturation of Maxi Gala showed a similar progression for both rootstocks. The non-destructive method correlated well with the traditional destructive methods, making it a tool for more practical and easy determination of the harvest date.
Resumo:
In the field of educational and psychological measurement, the shift from paper-based to computerized tests has become a prominent trend in recent years. Computerized tests allow for more complex and personalized test administration procedures, like Computerized Adaptive Testing (CAT). CAT, following the Item Response Theory (IRT) models, dynamically generates tests based on test-taker responses, driven by complex statistical algorithms. Even if CAT structures are complex, they are flexible and convenient, but concerns about test security should be addressed. Frequent item administration can lead to item exposure and cheating, necessitating preventive and diagnostic measures. In this thesis a method called "CHeater identification using Interim Person fit Statistic" (CHIPS) is developed, designed to identify and limit cheaters in real-time during test administration. CHIPS utilizes response times (RTs) to calculate an Interim Person fit Statistic (IPS), allowing for on-the-fly intervention using a more secret item bank. Also, a slight modification is proposed to overcome situations with constant speed, called Modified-CHIPS (M-CHIPS). A simulation study assesses CHIPS, highlighting its effectiveness in identifying and controlling cheaters. However, it reveals limitations when cheaters possess all correct answers. The M-CHIPS overcame this limitation. Furthermore, the method has shown not to be influenced by the cheaters’ ability distribution or the level of correlation between ability and speed of test-takers. Finally, the method has demonstrated flexibility for the choice of significance level and the transition from fixed-length tests to variable-length ones. The thesis discusses potential applications, including the suitability of the method for multiple-choice tests, assumptions about RT distribution and level of item pre-knowledge. Also limitations are discussed to explore future developments such as different RT distributions, unusual honest respondent behaviors, and field testing in real-world scenarios. In summary, CHIPS and M-CHIPS offer real-time cheating detection in CAT, enhancing test security and ability estimation while not penalizing test respondents.
Resumo:
Within this master thesis, various aspects related to the issue of sustainability in the food sector were addressed, focusing on the greenhouse gas emissions derived from livestock production. The increment in population number and wealth is directly related to the growing demand for meat products, which is, in turn, related to an increase in greenhouse gas emissions. Consumers are becoming more and more aware of these environmental issues and, therefore, sustainability factors are becoming even more relevant also from the environmental point of view. A very useful tool in this field is Response-Inducing Sustainability Evaluation (RISE), a software that allows you to determine the sustainability of a farm under many aspects, like energy consumption, livestock management and soil use. The RISE software processes the information obtained through a questionnaire submitted by the farmer, in which 10 different areas of sustainability in the farm are covered. For each theme, the results are expressed clearly with a score that goes from 0 to 100. The experimentation discussed in this work included two different projects, one regarding a dairy farm and the other regarding a poultry farm. The first one was conducted on a dairy farm in Germany and the results allowed to highlight the weakest areas of the farm on which recommendations were given for ecological improvement. The second project was conducted on a chicken broiler farm in Italy, on an experimental basis since it was the first time that the software was applied to poultry. The results pointed out the aspects that can be improved in the RISE software in order to make it more suitable for future poultry studies.
Resumo:
In recent years, developed countries have turned their attention to clean and renewable energy, such as wind energy and wave energy that can be converted to electrical power. Companies and academic groups worldwide are investigating several wave energy ideas today. Accordingly, this thesis studies the numerical simulation of the dynamic response of the wave energy converters (WECs) subjected to the ocean waves. This study considers a two-body point absorber (2BPA) and an oscillating surge wave energy converter (OSWEC). The first aim is to mesh the bodies of the earlier mentioned WECs to calculate their hydrostatic properties using axiMesh.m and Mesh.m functions provided by NEMOH. The second aim is to calculate the first-order hydrodynamic coefficients of the WECs using the NEMOH BEM solver and to study the ability of this method to eliminate irregular frequencies. The third is to generate a *.h5 file for 2BPA and OSWEC devices, in which all the hydrodynamic data are included. The BEMIO, a pre-and post-processing tool developed by WEC-Sim, is used in this study to create *.h5 files. The primary and final goal is to run the wave energy converter Simulator (WEC-Sim) to simulate the dynamic responses of WECs studied in this thesis and estimate their power performance at different sites located in the Mediterranean Sea and the North Sea. The hydrodynamic data obtained by the NEMOH BEM solver for the 2BPA and OSWEC devices studied in this thesis is imported to WEC-Sim using BEMIO. Lastly, the power matrices and annual energy production (AEP) of WECs are estimated for different sites located in the Sea of Sicily, Sea of Sardinia, Adriatic Sea, Tyrrhenian Sea, and the North Sea. To this end, the NEMOH and WEC-Sim are still the most practical tools to estimate the power generation of WECs numerically.
Resumo:
Modern society is now facing significant difficulties in attempting to preserve its architectural heritage. Numerous challenges arise consequently when it comes to documentation, preservation and restoration. Fortunately, new perspectives on architectural heritage are emerging owing to the rapid development of digitalization. Therefore, this presents new challenges for architects, restorers and specialists. Additionally, this has changed the way they approach the study of existing heritage, changing from conventional 2D drawings in response to the increasing requirement for 3D representations. Recently, Building Information Modelling for historic buildings (HBIM) has escalated as an emerging trend to interconnect geometrical and informational data. Currently, the latest 3D geomatics techniques based on 3D laser scanners with enhanced photogrammetry along with the continuous improvement in the BIM industry allow for an enhanced 3D digital reconstruction of historical and existing buildings. This research study aimed to develop an integrated workflow for the 3D digital reconstruction of heritage buildings starting from a point cloud. The Pieve of San Michele in Acerboli’s Church in Santarcangelo Di Romagna (6th century) served as the test bed. The point cloud was utilized as an essential referential to model the BIM geometry using Autodesk Revit® 2022. To validate the accuracy of the model, Deviation Analysis Method was employed using CloudCompare software to determine the degree of deviation between the HBIM model and the point cloud. The acquired findings showed a very promising outcome in the average distance between the HBIM model and the point cloud. The conducted approach in this study demonstrated the viability of producing a precise BIM geometry from point clouds.
Resumo:
This thesis contributes to the ArgMining 2021 shared task on Key Point Analysis. Key Point Analysis entails extracting and calculating the prevalence of a concise list of the most prominent talking points, from an input corpus. These talking points are usually referred to as key points. Key point analysis is divided into two subtasks: Key Point Matching, which involves assigning a matching score to each key point/argument pair, and Key Point Generation, which consists of the generation of key points. The task of Key Point Matching was approached using different models: a pretrained Sentence Transformers model and a tree-constrained Graph Neural Network were tested. The best model was the fine-tuned Sentence Transformers, which achieved a mean Average Precision score of 0.75, ranking 12 compared to other participating teams. The model was then used for the subtask of Key Point Generation using the extractive method in the selection of key point candidates and the model developed for the previous subtask to evaluate them.
Resumo:
Ultracold gases provide an ideal platform for quantum simulations of many-body systems. Here we are interested in a particular system which has been the focus of most experimental and theoretical works on ultracold fermionic gases: the unitary Fermi gas. In this work we study with Quantum Monte Carlo simulations a two-component gas of fermionic atoms at zero temperature in the unitary regime. Specifically, we are interested in studying how the effective masses for the quasi-particles of the two components of the Fermi liquid evolve as the polarization is progressively reduced from full to lower values. A recent theoretical work, based on alternative diagrammatic methods, has indeed suggested that such effective masses should diverge at a critical polarization. To independently verify such predictions, we perform Variational Monte Carlo (VMC) calculations of the energy based on Jastrow-Slater wavefunctions after adding or subtracting a particle with a given momentum to a full Fermi sphere. In this way, we determine the quasi-particle dispersions, from which we extract the effective masses for different polarizations. The resulting effective masses turn out to be quite close to the non-interacting values, even though some evidence of an increase for the effective mass of the minority component appears close to the predicted value for the critical polarization. Preliminary results obtained for the majority component with the Fixed-node Diffusion Monte Carlo (DMC) method seem to indicate that DMC could lead to an increase of the effective masses in comparison with the VMC results. Finally, we point out further improvements of the trial wave-function and boundary conditions that would be necessary in future simulations to draw definite conclusions on the effective masses of the polarized unitary Fermi gas.