910 resultados para external cavity semiconductor laser
Resumo:
In this paper, we present a novel 1x2 multi-mode-interferometer-Fabry-Perot (MMI-FP) laser diode, which demonstrated tunable single frequency operation with more than 30dB side mode suppression ratio (SMSR) and a tuning range of 25nm in the C and L bands, as well as a 750 kHz linewidth. These lasers do not require material regrowth and high resolution gratings; resulting in a simpler process that can significantly increase the yield and reduce the cost.
Resumo:
Three samples of garnet-kyanite paragneiss from the Variscan Ulten Zone (Northern Italy) were studied in detail for U-Th-Pb monazite dating. Monazite in these gneisses is abundant, shows highly variable grain size and occupies different textural positions: within the matrix, as inclusion in garnet and kyanite, within apatite aggregates. Monazite shows different deformation features as a function of the textural position: enclosed (shielded) monazite is generally more fractured than matrix (unshielded) monazite. The integration of textural information with deformation features and in situ U-Th-Pb analyses by LA-ICP-MS indicates that there is no direct correlation between textural site and monazite ages. Old ages of 351-343 Ma, determined on portions of large matrix (unshielded) monazite and on rare domains of monazite shielded by garnet, have been related to a prograde stage of the Variscan metamorphic evolution of the Ulten Zone. Ages of 330-326 Ma, which are related to the thermal peak, are recorded by small matrix monazite, external domains of large matrix monazite, and by (domains of) fractured monazite enclosed in garnet and kyanite. Large, old unshielded grains formed as blasts during the prograde metamorphic history and survived the peak metamorphism during which crystallisation/re-crystallisation partially occurred.
Resumo:
Light confinement and controlling an optical field has numerous applications in the field of telecommunications for optical signals processing. When the wavelength of the electromagnetic field is on the order of the period of a photonic microstructure, the field undergoes reflection, refraction, and coherent scattering. This produces photonic bandgaps, forbidden frequency regions or spectral stop bands where light cannot exist. Dielectric perturbations that break the perfect periodicity of these structures produce what is analogous to an impurity state in the bandgap of a semiconductor. The defect modes that exist at discrete frequencies within the photonic bandgap are spatially localized about the cavity-defects in the photonic crystal. In this thesis the properties of two tight-binding approximations (TBAs) are investigated in one-dimensional and two-dimensional coupled-cavity photonic crystal structures We require an efficient and simple approach that ensures the continuity of the electromagnetic field across dielectric interfaces in complex structures. In this thesis we develop \textrm{E} -- and \textrm{D} --TBAs to calculate the modes in finite 1D and 2D two-defect coupled-cavity photonic crystal structures. In the \textrm{E} -- and \textrm{D} --TBAs we expand the coupled-cavity \overrightarrow{E} --modes in terms of the individual \overrightarrow{E} -- and \overrightarrow{D} --modes, respectively. We investigate the dependence of the defect modes, their frequencies and quality factors on the relative placement of the defects in the photonic crystal structures. We then elucidate the differences between the two TBA formulations, and describe the conditions under which these formulations may be more robust when encountering a dielectric perturbation. Our 1D analysis showed that the 1D modes were sensitive to the structure geometry. The antisymmetric \textrm{D} mode amplitudes show that the \textrm{D} --TBA did not capture the correct (tangential \overrightarrow{E} --field) boundary conditions. However, the \textrm{D} --TBA did not yield significantly poorer results compared to the \textrm{E} --TBA. Our 2D analysis reveals that the \textrm{E} -- and \textrm{D} --TBAs produced nearly identical mode profiles for every structure. Plots of the relative difference between the \textrm{E} and \textrm{D} mode amplitudes show that the \textrm{D} --TBA did capture the correct (normal \overrightarrow{E} --field) boundary conditions. We found that the 2D TBA CC mode calculations were 125-150 times faster than an FDTD calculation for the same two-defect PCS. Notwithstanding this efficiency, the appropriateness of either TBA was found to depend on the geometry of the structure and the mode(s), i.e. whether or not the mode has a large normal or tangential component.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The aim of this study was to determine the influence of thickness and aging on the intrinsic fluorescence of sealing materials and their ability to block fluorescence from the underlying surface as assessed using a laser fluorescence device. Cavities of 0.5 mm and 1 mm depth were drilled into acrylic boards which were placed over two surfaces with different fluorescence properties: a low-fluorescence surface, to assess the intrinsic fluorescence of the sealing materials, and a high-fluorescence surface, to assess the fluorescence-blocking ability of the sealing materials. Ten cavities of each depth were filled with different sealing materials: Adper Scotchbond Multi-Purpose, Adper Single Bond 2, FluroShield, Conseal f and UltraSeal XT Plus. Fluorescence was measured with a DIAGNOdent pen at five different time points: empty cavity, after polymerization, and 1 day, 1 week and 1 month after filling. The individual values after polymerization, as well as the area under the curve for the different periods were submitted to ANOVA and the Tukey test (p < 0.05). At 0.5 mm, Scotchbond, FluroShield and UltraSeal showed insignificant changes in intrinsic fluorescence with aging and lower fluorescence after polymerization than Single Bond and Conseal. At 1 mm, Scotchbond and FluroShield showed the lowest intrinsic fluorescence, but only Scotchbond showed no chagnes in fluorescence with aging. At both depths, Scotchbond blocked significantly less fluorescence. All sealing materials blocked more fluorescence when applied to a depth of 1 mm. At 0.5 mm, fissure sealants blocked more fluorescence than adhesives, and did not show significant changes with aging. Scotchbond had the least affect on the fluorescence from the underlying surface and would probably have the least affect on the monitoring of sealed dental caries by laser fluorescence.
Resumo:
Thesis (Master's)--University of Washington, 2016-08
Resumo:
This thesis presents theoretical investigations of the sub band structure and optical properties of semiconductor quantum wires. For the subband structure, we employ multiband effective-mass theory and the effective bond-orbital model both of which fully account for the band mixing and material anisotropy. We also treat the structure geometry in detail taking account of such effects as the compositional grading across material interfaces. Based on the subband structure, we calculate optical properties of quantum-wire structures. A recuring theme is the cross-over from one- to ~wo-dimensional behavior in these structures. This complicated behavior procludes the application of simple theoretical models to obtain the electronic structure. In particular, we calculate laser properties of quantum wires grown in V-grooves and find enhanced performance compared with quantum-well lasers. We also investigate optical anisotropy in quantum-wire arrays and propose an electro-optic device based on such structures.
Resumo:
We report for the first time, rogue waves generation in a mode-locked fiber laser that worked in multiple-soliton state in which hundreds of solitons occupied the whole laser cavity. Using real-time spatio-temporal intensity dynamics measurements, it is unveiled that nonlinear soliton collision accounts for the formation of rogue waves in this laser state. The nature of interactions between solitons are also discussed. Our observation may suggest similar formation mechanisms of rogue waves in other systems.