997 resultados para excitation spectra


Relevância:

20.00% 20.00%

Publicador:

Resumo:

New near-infrared-luminescent mesoporous materials were prepared by linking ternary lanthanide (Er3+, Nd3+, Yb3+, Sm3+, Pr3+) complexes to the ordered mesoporous MCM-41 through a functionalized 1,10-phenanthroline (phen) group 5-(N,N-bis-3-(triethoxysilyl)propyl)ureyl-1,10-phenanthroline. The resulting materials (denoted as Ln(hfth)(3)phen-M41 and Pr(tfnb)(3)phen-M41; Ln=Er, Yb, Nd, Sm; hfth = 4,4,5,5,6,6,6-heptafluoro-1-(2-thienyl)hexane-1,3-dionate; tfnb = 4,4,4-trifluoro-1-(2-naphthyl)- 1, 3-butanedionate) were characterized by powder X-ray diffraction, N-2 adsorption/desorption, and elemental analysis. Luminescence spectra of these lanthanide-complex functionalized materials were recorded, and the luminescence decay times were measured. Upon excitation at the absorption of the organic ligands, all these materials show the characteristic NIR luminescence of the corresponding lanthanide (Er3+, Nd3+, Yb3+, Sm3+, Pr3+) ions by sensitization from the organic ligands moiety. The good luminescent performances enable these NIR-luminescent mesoporous materials to have possible applications in optical amplification (operating at 1300 or 1500 nm), laser systems, or medical diagnostics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

RE3+-activated alpha- and beta-CaAl2B2O7 (RE = Tb, Ce) were synthesized with the method of high-temperature solid-state reaction. Their VUV excitation and VUV-excited emission spectra are measured and discussed in the present article. The charge transfer band of Tb3+ and Ce3+ is respectively calculated to be at 151 +/- 2 and 159 +/- 3 nm. All the samples show an activator-independent excitation peak at about 175 nm and an emission peak at 350-360 nm ascribed to the host absorption and emission band, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phosphors CaYBO4:RE3+ (RE = Eu, Gd, Tb, Ce) were synthesized with the method of solid-state reaction at high temperature, and their vacuum ultraviolet (VUV)-visible luminescent properties in VUV-visible region were studied at 20 K. In CaYBO4, it is confirmed that there are two types of lattice sites that can be substituted by rare-earth ions. The host excitation and emission peaks of undoped CaYBO4 are very weak, which locate at about 175 and 350-360nm, respectively. The existence of Gd3+ can efficiently enhance the utilization of host absorption energy and result in a strong emission line at 314 nm. In CaYBO4, Eu3+ has typical red emission with the strongest peak at 610 nm; Tb3+ shows characteristic green emission, of which the maximum emission peak is located at 542 nm. The charge transfer band of CaYBO4:Eu3+ was observed at 228 nm; the co-doping of Gd3+ and Eu3+ can obviously sensitize the red emission of Eu3+. The fluorescent spectra of CaYBO4:Ce3+ is very weak due to photoionization; the co-addition of Ce3+-Tb3+ can obviously quench the luminescence of Tb3+.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Zinc(II)-2-(2-hydroxyphenyl)benzothiazolate complex is an excellent white-light-emitting material. Despite some studies devoted to this complex, no information on the real origin of the unusually broad electroluminescent (EL) emission is available. Therefore, we investigate photoluminescent and EL properties of the zinc complex. Orange phosphorescent emission at 580 nm was observed for the complex in thin film at 77 K, whereas only fluorescent emission was obtained at room temperature. Molecular orbitals, excitation energy, and emission energy of the complex were investigated using quantum chemical calculations. We fabricated the device with a structure of ITO/F16CuPc(5.5 nm)/Zn-complex/Al, where F16CuPc is hexadecafluoro copper phthalocyanine. The EL spectra varied strongly with the thickness of the emissive layer. We observed a significant change in the emission spectra with the viewing angles. Optical interference effects and light emission originating both from fluorescence and from phosphorescence can explain all of the observed phenomena, resulting in the broad light emission for the devices based on the Zn complex. We calculated the charge transfer integral and the reorganization energy to explain why the Zn complex is a better electron transporter than a hole transporter.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Four novel Ir-III and Pt-II complexes with cyclometalated ligands bearing a carbazole framework are prepared and characterized by elemental analysis, NMR spectroscopy, and mass spectrometry. Single-crystal X-ray diffraction studies of complexes 1, 3, and 4 reveal that the 3- or 2-position C atom of the carbazole unit coordinates to the metal center. The difference in the ligation position results in significant shifts in the emission spectra with the changes in wavelength being 84 nm for the Ir complexes and 63 nm for the Pt complexes. The electrochemical behavior and photophysical properties of the complexes are investigated, and correlate well with the results of density functional theory (DFT) calculations. Electroluminescent devices with a configuration of ITO/NPB/CBP:dopant/BCP/AlQ(3)/LiF/Al can attain very high efficiencies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The monodisperse array and nanowires Of Y2O3:Eu3+ phosphor were synthesized using anodic aluminum oxide (AAO) template by sol-gel method. Scanning electron microscope (SEM) images indicated that Y2O3:Eu3+ nanowires are parallelly arranged, all of which are in uniform diameter of about 50 nm. The high-magnification SEM image showed that each nanowire is composed of a lot of agglutinating particles. The patterns of selected-area electron diffraction confirmed that Y2O3:EU3+ nanowires mainly consist of polycrystalline materials. Excitation and emission spectra Of Y2O3:E U3+/AAO composite films were measured. The characteristic red emission peak of EU3+ ion attributed to D-5(0)-->F-7(2) transition in Y2O3:EU3+/AAO nanowires broadened its halfwidth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The samples of as-synthesized siliceous MCM-41, extracted MCM-41, amorphous silica particles and silica xerogels were heat treated from room temperature to 1000degreesC. Their photoluminescence (PL) spectra at room temperature excited by 254nm and 365nm ultraviolet light (UV) were investigated and compared. Excited by 254nm UV the MCM-41 samples do not display PL but amorphous silica particles and silica xerogels show PL, which changes with the heat treatment conditions for the samples. However, when excited by 365nm UV the PL spectra for the MCM-41 and the amorphous samples are similar. The carbon impurity and E' center mechanisms can be ruled out as the origin of PL in siliceous MCM-41 under UV excitation. The PL of MCM-41 series samples probably originates from oxygen-related defect center like dropSi-O-. according to the present work.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By using metal nitrates and oxides as the starting materials, Y3Al5O12 (YAG) and YAG: RE3+ (RE: Eu, Dy) powder phosphors were prepared by solid state (SS), coprecipitation (CP) and citrate-gel (CG) methods, respectively. The resulting YAG based phosphors were characterized by XRD and photoluminescent excitation and emission spectra as well as lifetimes. The purified crystalline phases of YAG were obtained at 800degreesC (CG) and 900degreesC (CP and SS), respectively. Great differences were observed for the excitation and emission spectra of Eu3+ and Dy3+ between crystalline and amorphous states of YAG, and their emission intensities increased with increasing the annealing temperature. At an identical annealing temperature and doping concentration, the Eu3+ and Dy3+ showed the strongest and weakest emission intensity in CP- and CG-derived YAG phosphors, respectively. The poor emission intensity for CG-derived phosphors is mainly caused by the contamination organic impurities from citric acid in the starting materials. Furthermore, the lifetimes for the samples derived from CG and CP routes are shorter than those derived from the SS route.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By using inorganic salts as raw materials and citric acid as complexing agent, alpha-Zn-3(PO4)(2) and Eu3+ doped alpha-Zn-3(PO4)(2) phosphor powders were prepared by a citrate-gel process. X-ray diffraction, (XRD), TG - DTA, FT - IR and luminescence excitation and emission spectra were used to characterize the resulting products. The results of XRD reveal that the powders begin to crystallize at 500 degreesC and pure alpha-Zn-3(PO4)(2) phase is obtained at 800 degreesC. And the results of XRD reveal that Eu3+ exists Lis EoPO(4) ill the powder. In the phosphor powders, the Eu3+ shows its characteristic red-orange (592 nm, D-5(0) - F-7(1)) emission and has no quenching concentration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lanthanide-doped sol-gel-derived materials are an attractive type of luminescent materials that can be processed at ambient temperatures. However, the solubility of the lanthanide complexes in the matrix is a problem and it is difficult to obtain a uniform distribution of the complexes. Fortunately, these problems can be solved by covalently linking the lanthanide complex to the sol-gel-derived matrix. In this study, luminescent Eu3+ and Tb3+ bipyridine complexes were immobilized on sol-gel-derived silica. FT-IR, DTA-TG and luminescence spectra, as well as luminescence decay analysis, were used to characterize the obtained hybrid materials. The organic groups from the bipyridine-Si moiety were mostly destroyed between 220 and 600 degreesC. The luminescence properties of lanthanide bipyridine complexes anchored to the backbone of the silica network and the corresponding pure complexes were comparatively investigated, which indicates that the lanthanide bipyridine complex was formed during the hydrolysis and co-condensation of TEOS and modified bipyridine. Excitation at the ligand absorption wavelength (336 nm for the hybrid materials and 350 nm for the pure complexes) resulted in strong emission of the lanthanide ions: Eu3+ D-5(0)-F-7(J) (J = 0, 1, 2, 3, 4) and Tb3+ D-5(4)-F-7(J) (J = 6, 5, 4, 3) emission lines due to efficient energy transfer from the ligands to the lanthanide ions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanocrystals of SrAl2O4:Eu2+ have been prepared by combustion synthesis. The results of XRD indicated that the resulting SrAl2O4:Eu2+ nanocrystals have a reduced and distorted monoclinic lattice compared with bulk materials. Both the excitation and emission spectra of SrAl2O4:Eu2+ nanocrystals shifts to higher energies in contrast to the bulk materials. The band structure calculation is performed using first-principles full potential-linearized augmented plane wave method within density functional theory. The calculated results are in reasonable agreement with our experimental results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ca2Gd8(SiO4)(6)O-2: A(A = Ph2+, Tm3+) phosphors were prepared through the sol-gel process. X-ray diffraction (XRD), scanning electron microseopy(SEM) and photoluminescence spectra were used to characterize the resulting phosphors. The results of XRD indicate that the phosphors crystallized completely at 1000 degreesC. SEM study reveals that the average grain size is 300 similar to 1000 nm. In Ca2Gd8(SiO4)(6)O-2: Tm3+ phosphors, the Tm3+ shows its characteristic blue emission at 456 nm (D-1(2)-F-3(4)) upon excitation into its H-3(6)-D-1(2)(361 nm), with an optimum doping concentration of 1 mol% of Gd3+ in the host lattices. In Ca2Gd8(SiO4)(6)O-2: Pb2+, Tm3+ phosphors, excitation into the Ph2+ at 266 nm (S-1(0)-P-3(1)) yields the emissions of Gd3+ at 311 nm (P-6-S-8) and Tm3+ at 367 nm (D-1(2)-H-3(6)) and 456 our (D-1(2)-F-3(4)), indicating that energy transfer processes of Pb2+-Gd3+ and Ph2+-Tm3+ have occur-red in the host lattices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, BPO4 and Ba2+-doped BPO4 powder samples were prepared by the sol-gel process using glycerol and poly(ethylene glycol) as additives. The structure and optical properties of the resulting samples were characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, field emission scanning electron microscopy (FESEM), diffuse reflection spectra, photoluminescence (PL) excitation and emission spectra, quantum yield, kinetic decay, and electron paramagnetic resonance (EPR), respectively. It was found that the undoped BPO4 showed a weak purple blue emission (409 nm, lifetime 6.4 ns) due to the carbon impurities involved in the host lattice. Doping Ba2+ into BPO4 resulted in oxygen-related defects as additional emission centers which enhanced the emission intensity greatly (> 10x) and shifted the emission to a longer-wavelength region (lambda(max) = 434 nm; chromaticity coordinates: x = 0.174, y = 0. 187) with a bluish-white color. The highest emission intensity was obtained ;when doping 6 mol % Ba2+ in BPO4, which has a quantum yield as high as 31%. The luminescent mechanisms of BPO4 and Ba2+-doped BPO4 were discussed in detail according to the existing models for silica-based materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We observed that the SrMg2(PO4)(2):Eu phosphor could emit long life phosphorescence with the excitation light whose wavelength was shorter than 420 nm, however, when La, Ce, or Gd was codoped, the wavelength of the excitation light to cause the phosphorescence had a redshift of 40 nm. A possible mechanism and related discussion for this redshift phenomenon of the excitation light was given. It was suggested that the threshold between the trap and valence band was decreased with the addition of the codopants.