946 resultados para etch-and-rinse adhesive


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The early stages of nanoporous layer formation, under anodic conditions in the absence of light, were investigated for n-type InP with a carrier concentration of ∼3× 1018 cm-3 in 5 mol dm-3 KOH and a mechanism for the process is proposed. At potentials less than ∼0.35 V, spectroscopic ellipsometry and transmission electron microscopy (TEM) showed a thin oxide film on the surface. Atomic force microscopy (AFM) of electrode surfaces showed no pitting below ∼0.35 V but clearly showed etch pit formation in the range 0.4-0.53 V. The density of surface pits increased with time in both linear potential sweep and constant potential reaching a constant value at a time corresponding approximately to the current peak in linear sweep voltammograms and current-time curves at constant potential. TEM clearly showed individual nanoporous domains separated from the surface by a dense ∼40 nm InP layer. It is concluded that each domain develops as a result of directionally preferential pore propagation from an individual surface pit which forms a channel through this near-surface layer. As they grow larger, domains meet, and the merging of multiple domains eventually leads to a continuous nanoporous sub-surface region.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Microwave annealing is an emerging technique for achieving ordered patterns of block copolymer films on substrates. Little is understood about the mechanisms of microphase separation during the microwave annealing process and how it promotes the microphase separation of the blocks. Here, we use controlled power microwave irradiation in the presence of tetrahydrofuran (THF) solvent, to achieve lateral microphase separation in high- lamellar-forming poly(styrene-b-lactic acid) PS-b-PLA. A highly ordered line pattern was formed within seconds on silicon, germanium and silicon on insulator (SOI) substrates. In-situ temperature measurement of the silicon substrate coupled to condition changes during "solvo-microwave" annealing allowed understanding of the processes to be attained. Our results suggest that the substrate has little effect on the ordering process and is essentially microwave transparent but rather, it is direct heating of the polar THF molecules that causes microphase separation. It is postulated that the rapid interaction of THF with microwaves and the resultant temperature increase to 55 degrees C within seconds causes an increase of the vapor pressure of the solvent from 19.8 to 70 kPa. This enriched vapor environment increases the plasticity of both PS and PLA chains and leads to the fast self-assembly kinetics. Comparing the patterns formed on silicon, germanium and silicon on insulator (SOI) and also an in situ temperature measurement of silicon in the oven confirms the significance of the solvent over the role of substrate heating during "solvo-microwave" annealing. Besides the short annealing time which has technological importance, the coherence length is on a micron scale and dewetting is not observed after annealing. The etched pattern (PLA was removed by an Ar/O-2 reactive ion etch) was transferred to the underlying silicon substrate fabricating sub-20 nm silicon nanowires over large areas demonstrating that the morphology is consistent both across and through the film.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nano-scale touch screen thin film have not been thoroughly investigated in terms of dynamic impact analysis under various strain rates. This research is focused on two different thin films, Zinc Oxide (ZnO) film and Indium Tin Oxide (ITO) film, deposited on Polyethylene Terephthalate (PET) substrate for the standard touch screen panels. Dynamic Mechanical Analysis (DMA) was performed on the ZnO film coated PET substrates. Nano-impact (fatigue) testing was performed on ITO film coated PET substrates. Other analysis includes hardness and the elastic modulus measurements, atomic force microscopy (AFM), Fourier Transform Infrared Spectroscopy (FTIR) and the Scanning Electron Microscopy (SEM) of the film surface.
Ten delta of DMA is described as the ratio of loss modulus (viscous properties) and storage modulus (elastic properties) of the material and its peak against time identifies the glass transition temperature (Tg). Thus, in essence the Tg recognizes changes from glassy to rubber state of the material and for our sample ZnO film, Tg was found as 388.3 K. The DMA results also showed that the Ten delta curve for Tg increases monotonically in the viscoelastic state (before Tg) and decreases sharply in the rubber state (after Tg) until recrystallization of ZnO takes place. This led to an interpretation that enhanced ductility can be achieved by negating the strength of the material.
For the nano-impact testing using the ITO coated PET, the damage started with the crack initiation and propagation. The interpretation of the nano-impact results depended on the characteristics of the loading history. Under the nano-impact loading, the surface structure of ITO film suffered from several forms of failure damages that range from deformation to catastrophic failures. It is concluded that in such type of application, the films should have low residual stress to prevent deformation, good adhesive strength, durable and good resistance to wear.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Stainless steels were developed in the early 20th century and are used where both the mechanical properties of steels and corrosion resistance are required. There is continuous research to allow stainless steel components to be produced in a more economical way and be used in more harsh environments. A necessary component in this effort is to correlate the service performance with the production processes. The central theme of this thesis is the mechanical grinding process.  This is commonly used for producing stainless steel components, and results in varied surface properties that will strongly affect their service life. The influence of grinding parameters including abrasive grit size, machine power and grinding lubricant were studied for 304L austenitic stainless steel (Paper II) and 2304 duplex stainless steel (Paper I). Surface integrity was proved to vary significantly with different grinding parameters. Abrasive grit size was found to have the largest influence. Surface defects (deep grooves, smearing, adhesive/cold welding chips and indentations), a highly deformed surface layer up to a few microns in thickness and the generation of high level tensile residual stresses in the surface layer along the grinding direction were observed as the main types of damage when grinding stainless steels. A large degree of residual stress anisotropy is interpreted as being due to mechanical effects dominating over thermal effects. The effect of grinding on stress corrosion cracking behaviour of 304L austenitic stainless steel in a chloride environment was also investigated (Paper III). Depending on the surface conditions, the actual loading by four-point bend was found to deviate from the calculated value using the formula according to ASTM G39 by different amounts. Grinding-induced surface tensile residual stress was suggested as the main factor to cause micro-cracks initiation on the ground surfaces. Grinding along the loading direction was proved to increase the susceptibility to chloride-induced SCC, while grinding perpendicular to the loading direction improved SCC resistance. The knowledge obtained from this work can provide a reference for choosing appropriate grinding parameters when fabricating stainless steel components; and can also be used to help understanding the failure mechanism of ground stainless steel components during service.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this study was to investigate whether rinsing the mouth with a carbohydrate solution could improve skill-specific fencing performance and cognitive function following a fatigue inducing simulated bout of fencing in epee fencers. Eleven healthy, competitive epee fencers (three female; eight male; 33.9 ± 14.7 years; body mass 79 ± 16 kg; height 162 ± 54 cm) volunteered to participant in a single-blind crossover design study. During visit 1 participants completed a 1-minute lunge test and stroop test pre and post fatigue inducing fencing protocol. A 30 second electroencephalography (EEG) recording was taken pre-protocol participants were instructed stay in a seated stationary position with their eyes closed. Heart rate and ratings of perceived exertion were recorded following each fight during the fatiguing protocol. Participants mouth rinsed (10 seconds) either 25ml of a 6.7% maltodextrin solution (CHO) or 25ml of water (placebo) between fights and during the EEG recording. Blood lactate and glucose measurements were taken at baseline, pre and post protocol. All measurements and tests were repeated during a 2nd visit to the laboratory, except participants were given a different solution to mouth rinse, separated by a minimum of 5 days. The results showed an increase in heart rate (P < 0.05) and overall RPE (P < 0.001) over time in both trials. There were no recorded differences in blood glucose (F(1,8) = 0.634, P = 0.4, ηp 0.07) or blood lactate levels (F(1,8) = 0.123, P = 0.7, ηp 0.01) between trials. There was a significant improvement in lunge test accuracy in the CHO trial (F(1,8) = 5.214, P = 0.05, ηp 0.40). However, there was no recorded difference in response time to congruent (F(1,8) = 0.326, P = 0.58, ηp 0.04) or incongruent (F(1,8) = 0.189, P = 0.68, ηp 0.02) stimuli between trials. In conclusion mouth rinsing a CHO solution significantly improves accuracy of skill-specific fencing performance but does not affect cognitive function following a fatigue inducing fencing protocol in epee fencers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cadastral survey map showing lot lines, lot nos., dimensions, acreages, and proposed streets.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Batrachoidids, which include midshipman and toadfish are less known among embryologists, but are common in other fields. They are characteristic for their acoustic communication, and develop hearing and sound production while young juveniles. They lay large benthic eggs (>5mm) with a thick chorion and adhesive disk and slow development, which are particularly challenging for studying embryology. Here we took advantage of a classical tissue clearing technique and the OPenT open-source platform for optical tomography imaging, to image a series of embryos and larvae from 3 to 30mm in length, which allowed detailed 3D anatomical reconstructions non-destructively. We documented some of the developmental stages (early and late in development) and the anatomy of the delicate stato-acoustic organs, swimming bladder and associated sonic muscles. Compared to other techniques accessible to developmental biology labs, OPenT provided advantages in terms of image quality, cost of operation and data throughput, allowing identification and quantitative morphometrics of organs in larvae, earlier and with higher accuracy than is possible with other imaging techniques.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Also covers Morristown and surrounding areas.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A basic requirement of a plasma etching process is fidelity of the patterned organic materials. In photolithography, a He plasma pretreatment (PPT) based on high ultraviolet and vacuum ultraviolet (UV/VUV) exposure was shown to be successful for roughness reduction of 193nm photoresist (PR). Typical multilayer masks consist of many other organic masking materials in addition to 193nm PR. These materials vary significantly in UV/VUV sensitivity and show, therefore, a different response to the He PPT. A delamination of the nanometer-thin, ion-induced dense amorphous carbon (DAC) layer was observed. Extensive He PPT exposure produces volatile species through UV/VUV induced scissioning. These species are trapped underneath the DAC layer in a subsequent plasma etch (PE), causing a loss of adhesion. Next to stabilizing organic materials, the major goals of this work included to establish and evaluate a cyclic fluorocarbon (FC) based approach for atomic layer etching (ALE) of SiO2 and Si; to characterize the mechanisms involved; and to evaluate the impact of processing parameters. Periodic, short precursor injections allow precise deposition of thin FC films. These films limit the amount of available chemical etchant during subsequent low energy, plasma-based Ar+ ion bombardment, resulting in strongly time-dependent etch rates. In situ ellipsometry showcased the self-limited etching. X-ray photoelectron spectroscopy (XPS) confirms FC film deposition and mixing with the substrate. The cyclic ALE approach is also able to precisely etch Si substrates. A reduced time-dependent etching is seen for Si, likely based on a lower physical sputtering energy threshold. A fluorinated, oxidized surface layer is present during ALE of Si and greatly influences the etch behavior. A reaction of the precursor with the fluorinated substrate upon precursor injection was observed and characterized. The cyclic ALE approach is transferred to a manufacturing scale reactor at IBM Research. Ensuring the transferability to industrial device patterning is crucial for the application of ALE. In addition to device patterning, the cyclic ALE process is employed for oxide removal from Si and SiGe surfaces with the goal of minimal substrate damage and surface residues. The ALE process developed for SiO2 and Si etching did not remove native oxide at the level required. Optimizing the process enabled strong O removal from the surface. Subsequent 90% H2/Ar plasma allow for removal of C and F residues.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aim: To evaluate the dislocation resistance of the quartz fiber post/cement/dentin interface after different adhesion strategies. Methods: Forty bovine lower central incisors were selected and prepared with K-files using the step-back technique, and irrigated with 3 mL of distilled water preceding the use of each instrument. Prepared teeth were stored at 37ºC and 100% humidity for 7 days. The roots were prepared and randomized into 4 groups. The quartz fiber post was cemented with an adhesion strategy according to the following groups: GBisCem- BISCEM; GOneStep±C&B- One Step ± C&B; GAllBond±C&B- AllBond3 ± C&B; GAllBondSE±C&B- AllBondSE ±C&B with a quartz fiber post. Cross-sectional root slices of 0.7 mm were produced and stored for 24 h at 37° C before being submitted to push-out bond strength. Results: The mean and standard deviation values of dislocation resistance were GBisCem: 1.12 (± 0.23) MPa, GOneStep±C&B: 0.81 (± 0.31) MPa, GAllBond±C&B: 0.98 (± 0.14) MPa, and GAllBondSE±C&B: 1.57 (± 0.04) MPa. GAllBondSE±C&B showed significantly higher values of dislocation resistance than the other groups. Conclusions: Based on this study design, it may be concluded that adhesion strategies showed different results of quartz post dislocation resistance. Simplified adhesive system with sodium benzene sulphinate incorporation provided superior dislocation resistance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tese de Doutoramento em Ciências Veterinárias na Especialidade de Ciências Biológicas e Biomédicas

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Intracochlear trauma from surgical insertion of bulky electrode arrays and inadequate pitch perception are areas of concern with current hand-assembled commercial cochlear implants. Parylene thin-film arrays with higher electrode densities and lower profiles are a potential solution, but lack rigidity and hence depend on manually fabricated permanently attached polyethylene terephthalate (PET) tubing based bulky backing devices. As a solution, we investigated a new backing device with two sub-systems. The first sub-system is a thin poly(lactic acid) (PLA) stiffener that will be embedded in the parylene array. The second sub-system is an attaching and detaching mechanism, utilizing a poly(N-vinylpyrrolidone)-block-poly(d,l-lactide) (PVP-b-PDLLA) copolymer-based biodegradable and water soluble adhesive, that will help to retract the PET insertion tool after implantation. As a proof-of-concept of sub-system one, a microfabrication process for patterning PLA stiffeners embedded in parylene has been developed. Conventional hotembossing, mechanical micromachining, and standard cleanroom processes were integrated for patterning fully released and discrete stiffeners coated with parylene. The released embedded stiffeners were thermoformed to demonstrate that imparting perimodiolar shapes to stiffener-embedded arrays will be possible. The developed process when integrated with the array fabrication process will allow fabrication of stiffener-embedded arrays in a single process. As a proof-of-concept of sub-system two, the feasibility of the attaching and detaching mechanism was demonstrated by adhering 1x and 1.5x scale PET tube-based insertion tools and PLA stiffeners embedded in parylene using the copolymer adhesive. The attached devices survived qualitative adhesion tests, thermoforming, and flexing. The viability of the detaching mechanism was tested by aging the assemblies in-vitro in phosphate buffer solution. The average detachment times, 2.6 minutes and 10 minutes for 1x and 1.5x scale devices respectively, were found to be clinically relevant with respect to the reported array insertion times during surgical implantation. Eventually, the stiffener-embedded arrays would not need to be permanently attached to current insertion tools which are left behind after implantation and congest the cochlear scala tympani chamber. Finally, a simulation-based approach for accelerated failure analysis of PLA stiffeners and characterization of PVP-b-PDLLA copolymer adhesive has been explored. The residual functional life of embedded PLA stiffeners exposed to body-fluid and thereby subjected to degradation and erosion has been estimated by simulating PLA stiffeners with different parylene coating failure types and different PLA types for a given parylene coating failure type. For characterizing the PVP-b-PDLLA copolymer adhesive, several formulations of the copolymer adhesive were simulated and compared based on the insertion tool detachment times that were predicted from the dissolution, degradation, and erosion behavior of the simulated adhesive formulations. Results indicate that the simulation-based approaches could be used to reduce the total number of time consuming and expensive in-vitro tests that must be conducted.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Solder-joining using metallic solder alloys is an alternative to adhesive bonding. Laser-based soldering processes are especially well suited for the joining of optical components made of fragile and brittle materials such as glasses, ceramics and optical crystals due to a localized and minimized input of thermal energy. The Solderjet Bumping technique is used to assemble a miniaturized laser resonator in order to obtain higher robustness, wider thermal conductivity performance, higher vacuum and radiation compatibility, and better heat and long term stability compared with identical glued devices. The resulting assembled compact and robust green diode-pumped solid-state laser is part of the future Raman Laser Spectrometer designed for the Exomars European Space Agency (ESA) space mission 2018.