938 resultados para estuaries


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effects of nutrient availability and litter quality on litter decomposition were measured in two oligotrophic phosphorus (P)-limited Florida Everglades esturies, United States. The two estuaries differ, in that one (Shark River estuary) is directly connected to the Gulf of Mexico and receives marine P, while the other (Taylor Slough estuary) does not receive marine P because Florida Bay separates it from the Gulf of Mexico. Decomposition of three macrophytes.Cladium jamaicense, Eleochaaris spp., andJuncus roemerianus, was studied using a litter bag technique over 18 mo. Litter was exposed to three treatments: soil surface+macroinvertebrates (=macro), soil surface without macroinvertebrates (=wet), and above the soil and water (=aerial). The third treatment replicated the decomposition of standing dead leaves. Decomposition rates showed that litter exposed to the wet and macro treatments decomposed significantly faster than the aerial treatment, where atmospheric deposition was the only source of nutrients. Macroinvertebrates had no influence on litter decompostion rates.C. jamaicense decomposed faster at sites, with higher P, andEleocharis spp. decomposed significantly faster at sites with higher nitrogen (N). Initial tissue C:N and C:P molar ratios revealed that the nutrient quality of litter of bothEleocharis spp. andJ. roemerianus was higher thanC. jamaicense, but onlyEleocharis spp. decomposed faster thanC. jamaicense. C. jamaicense litter tended to immobilize P, whileEleocharis spp. litter showed net remineralization of N and P. A comparison with other estuarine and wetland systems revealed the dependence of litter decomposition on nutrient availability and litter quality. The results from this experiment suggest that Everglades restoration may have an important effect on key ecosystem processes in the estuarine ecotone of this landscape.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the Florida Everglades, tree islands are conspicuous heterogeneous elements in the herbaceous wetland landscape. We characterized the biogeochemical role of a seasonally flooded tree island during wet season inundation, specifically examining hydrologically mediated flows of nitrogen (N) and N retention by the tree island. We estimated ecosystem N standing stocks and fluxes, soil and litter N transformation rates, and hydrologic fluxes of N to quantify the net ecosystem N mass flux. Results showed that hydrologic sources of N were dominated by surface water loads of nitrate (NO3) and ammonium (NH4). Nitrate immobilization by soils and surficial leaf litter was an important sink for surface water dissolved inorganic N (DIN). We estimated that the net annual DIN retention by a seasonally flooded tree island was 20.5 ± 5.0 g m−2 during wet season inundation. Based on the estimated tree island surface water DIN loading rate, a seasonally flooded tree island retained 76% of imported DIN. As such, seasonally flooded tree islands have the potential to retain 55% of DIN entering the marsh landscape via upstream canal overland flow in the wet season. By increasing reactive surface area and DOC availability, we suggest that tree islands promote convergence of elements that enhance DIN retention. Tree islands of this region are thus important components of landscape-scale restoration efforts that seek to reduce sources of anthropogenic DIN to downstream estuaries.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coastal ecosystems around the world are constantly changing in response to interacting shifts in climate and land and water use by expanding human populations. The development of agricultural and urban areas in South Florida significantly modified its hydrologic regime and influenced rates of environmental change in wetlands and adjacent estuaries. This study describes changes in diatom species composition through time from four sediment cores collected across Florida Bay, for the purposes of detecting periods of major shifts in assemblage structure and identifying major drivers of those changes. We examined the magnitude of diatom assemblage change in consecutive 2-cm samples of the 210Pb-dated cores, producing a record of the past ~130 years. Average assemblage dissimilarity among successive core samples was ~30%, while larger inter-sample and persistent differences suggest perturbations or directional shifts. The earliest significant compositional changes occurred in the late 1800s at Russell Bank, Bob Allen Bank and Ninemile Bank in the central and southwestern Bay, and in the early 1900s at Trout Cove in the northeast. These changes coincided with the initial westward redirection of water from Lake Okeechobee between 1881 and 1894, construction of several canals between 1910 and 1915, and building the Florida Overseas Railroad between 1906 and 1916. Later significant assemblage restructurings occurred in the northeastern and central Bay in the late 1950s, early 1960s and early 1970s, and in the southwestern Bay in the 1980s. These changes coincide with climate cycles driving increased hurricane frequency in the 1960s, followed by a prolonged dry period in the 1970s to late 1980s that exacerbated the effects of drainage operations in the Everglades interior. Changes in the diatom assemblage structure at Trout Cove and Ninemile Bank in the 1980s correspond to documented eutrophication and a large seagrass die-off. A gradual decrease in the abundance of freshwater to brackish water taxa in the cores over ~130 years implies that freshwater deliveries to Florida Bay were much greater prior to major developments on the mainland. Salinity, which was quantitatively reconstructed at these sites, had the greatest effect on diatom communities in Florida Bay, but other factors—often short-lived, natural and anthropogenic in nature—also played important roles in that process. Studying the changes in subfossil diatom communities over time revealed important environmental information that would have been undetected if reconstructing only one water quality variable.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The composition and distribution of diatom algae inhabiting estuaries and coasts of the subtropical Americas are poorly documented, especially relative to the central role diatoms play in coastal food webs and to their potential utility as sentinels of environmental change in these threatened ecosystems. Here, we document the distribution of diatoms among the diverse habitat types and long environmental gradients represented by the shallow topographic relief of the South Florida, USA, coastline. A total of 592 species were encountered from 38 freshwater, mangrove, and marine locations in the Everglades wetland and Florida Bay during two seasonal collections, with the highest diversity occurring at sites of high salinity and low water column organic carbon concentration (WTOC). Freshwater, mangrove, and estuarine assemblages were compositionally distinct, but seasonal differences were only detected in mangrove and estuarine sites where solute concentration differed greatly between wet and dry seasons. Epiphytic, planktonic, and sediment assemblages were compositionally similar, implying a high degree of mixing along the shallow, tidal, and storm-prone coast. The relationships between diatom taxa and salinity, water total phosphorus (WTP), water total nitrogen (WTN), and WTOC concentrations were determined and incorporated into weighted averaging partial least squares regression models. Salinity was the most influential variable, resulting in a highly predictive model (r apparent 2  = 0.97, r jackknife 2  = 0.95) that can be used in the future to infer changes in coastal freshwater delivery or sea-level rise in South Florida and compositionally similar environments. Models predicting WTN (r apparent 2  = 0.75, r jackknife 2  = 0.46), WTP (r apparent 2  = 0.75, r jackknife 2  = 0.49), and WTOC (r apparent 2  = 0.79, r jackknife 2  = 0.57) were also strong, suggesting that diatoms can provide reliable inferences of changes in solute delivery to the coastal ecosystem.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The spatial and temporal distribution of planktonic, sediment-associated and epiphytic diatoms among 58 sites in Biscayne Bay, Florida was examined in order to identify diatom taxa indicative of different salinity and water quality conditions, geographic locations and habitat types. Assessments were made in contrasting wet and dry seasons in order to develop robust assessment models for salinity and water quality for this region. We found that diatom assemblages differed between nearshore and offshore locations, especially during the wet season when salinity and nutrient gradients were steepest. In the dry season, habitat structure was primary determinant of diatom assemblage composition. Among a suite of physicochemical variables, water depth and sediment total phosphorus (STP) were most strongly associated with diatom assemblage composition in the dry season, while salinity and water total phosphorus (TP) were more important in the wet season. We used indicator species analysis (ISA) to identify taxa that were most abundant and frequent at nearshore and offshore locations, in planktonic, epiphytic and benthic habitats and in contrasting salinity and water quality regimes. Because surface water concentrations of salts, total phosphorus, nitrogen (TN) and organic carbon (TOC) are partly controlled by water management in this region, diatom-based models were produced to infer these variables in modern and retrospective assessments of management-driven changes. Weighted averaging (WA) and weighted averaging partial least squares (WA-PLS) regressions produced reliable estimates of salinity, TP, TN and TOC from diatoms (r2 = 0.92, 0.77, 0.77 and 0.71, respectively). Because of their sensitivity to salinity, nutrient and TOC concentrations diatom assemblages should be useful in developing protective nutrient criteria for estuaries and coastal waters of Florida.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Comprehensive Everglades Restoration Plan (CERP) attempts to restore hydrology in the Northern and Southern Estuaries of Florida. Reefs of the Eastern oyster Crassostrea virginica are a dominant feature of the estuaries along the Southwest Florida coast. Oysters are benthic, sessile, filter-feeding organisms that provide ecosystem services by filtering the water column and providing food, shelter and habitat for associated organisms. As such, the species is an excellent sentinel organism for examining the impacts of restoration on estuarine ecosystems. The implementation of CERP attempts to improve: the hydrology and spatial and structural characteristics of oyster reefs, the recruitment and survivorship of C. virginica, and the reef-associated communities of organisms. This project links biological responses and environmental conditions relative to hydrological changes as a means of assessing positive or negative trends in oyster responses and population trends. Using oyster responses, we have developed a communication tool (i.e., Stoplight Report Card) based on CERP performance measures that can distinguish between responses to restoration and natural patterns. The Stoplight Report Card system is a communication tool that uses Monitoring and Assessment Program (MAP) performance measures to grade an estuary's response to changes brought about by anthropogenic input or restoration activities. The Stoplight Report Card consists of both a suitability index score for each organism metric as well as a trend score (− decreasing trend, +/− no change in trend, and + increasing trend). Based on these two measures, a component score (e.g., living density) is calculated by averaging the suitability index score and the trend score. The final index score is obtained by taking the geometric score of each component, which is then translated into a stoplight color for success (green), caution (yellow), or failure (red). Based on the data available for oyster populations and the responses of oysters in the Caloosahatchee Estuary, the system is currently at stage “caution.” This communication tool instantly conveys the status of the indicator and the suitability, while trend curves provide information on progress towards reaching a target. Furthermore, the tool has the advantage of being able to be applied regionally, by species, and collectively, in concert with other species, system-wide.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissolved organic carbon (DOC) concentration and dissolved organic matter (DOM) optical properties were analyzed along two estuarine river transects during the wet and dry seasons to better understand DOM dynamics and quantify mangrove inputs. A tidal study was performed to assess the impacts of tidal pumping on DOM transport. DOM in the estuaries showed non-conservative mixing indicative of mangrove-derived inputs. Similarly, fluorescence data suggest that some terrestrial humic-like components showed non-conservative behavior. An Everglades freshwater-derived fluorescent component, which is associated with soil inputs from the Northern Everglades, behaved conservatively. During the dry season, a protein-like component behaved conservatively until the mid-salinity range when non-conservative behavior due to degradation and/or loss was observed. The tidal study data suggests mangrove porewater inputs to the rivers following low tide. The differences in quantity of DOM exported by the Shark and Harney Rivers imply that geomorphology and tidal hydrology may be a dominant factor controlling the amount of DOM exported from the mangrove ecotone, where up to 21 % of the DOC is mangrove-derived. Additionally, nutrient concentrations and other temporal factors may control DOM export from the mangroves, particularly for the microbially derived fluorescent components, contributing to the seasonal differences. The wet and dry season fluxes of mangrove DOM from the Shark River is estimated as 0.27 × 109 mg C d−1 and 0.075 × 109 mg C d−1, respectively, and the Harney River is estimated as 1.9 × 109 mg C d−1 and 0.20 × 109 mg C d−1.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The relative abundance of diatom species in different habitats can be used as a tool to infer prior environmental conditions and evaluate management decisions that influence habitat quality. Diatom distribution patterns were examined to characterize relationships between assemblage composition and environmental gradients in a subtropical estuarine watershed. We identified environmental correlates of diatom distribution patterns across the Charlotte Harbor, Florida, watershed; evaluated differences among three major river drainages; and determined how accurately local environmental conditions can be predicted using inference models based on diatom assemblages. Sampling locations ranged from freshwater to marine (0.1–37.2 ppt salinity) and spanned broad nutrient concentration gradients. Salinity was the predominant driver of difference among diatom assemblages across the watershed, but other environmental variables had stronger correlations with assemblages within the subregions of the three rivers and harbor. Eighteen indicator taxa were significantly affiliated with subregions. Relationships between diatom taxon distributions and salinity, distance from the harbor, total phosphorus (TP), and total nitrogen (TN) were evaluated to determine the utility of diatom assemblages to predict environmental values using a weighted averaging-regression approach. Diatom-based inferences of these variables were strong (salinity R 2 = 0.96; distance R 2 = 0.93; TN R 2 = 0.83; TP R 2 = 0.83). Diatom assemblages provide reliable estimates of environmental parameters on different spatial scales across the watershed. Because many coastal diatom taxa are ubiquitous, the diatom training sets provided here should enable diatom-based environmental reconstructions in subtropical estuaries that are being rapidly altered by land and water use changes and sea level rise.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Understanding how natural and anthropogenic drivers affect extant food webs is critical to predicting the impacts of climate change and habitat alterations on ecosystem dynamics. In the Florida Everglades, seasonal reductions in freshwater flow and precipitation lead to annual migrations of aquatic taxa from marsh habitats to deep-water refugia in estuaries. The timing and intensity of freshwater reductions, however, will be modified by ongoing ecosystem restoration and predicted climate change. Understanding the importance of seasonally pulsed resources to predators is critical to predicting the impacts of management and climate change on their populations. As with many large predators, however, it is difficult to determine to what extent predators like bull sharks (Carcharhinus leucas) in the coastal Everglades make use of prey pulses currently. We used passive acoustic telemetry to determine whether shark movements responded to the pulse of marsh prey. To investigate the possibility that sharks fed on marsh prey, we modelled the predicted dynamics of stable isotope values in bull shark blood and plasma under different assumptions of temporal variability in shark diets and physiological dynamics of tissue turnover and isotopic discrimination. Bull sharks increased their use of upstream channels during the late dry season, and although our previous work shows long-term specialization in the diets of sharks, stable isotope values suggested that some individuals adjusted their diets to take advantage of prey entering the system from the marsh, and as such this may be an important resource for the nursery. Restoration efforts are predicted to increase hydroperiods and marsh water levels, likely shifting the timing, duration and intensity of prey pulses, which could have negative consequences for the bull shark population and/or induce shifts in behaviour. Understanding the factors influencing the propensity to specialize or adopt more flexible trophic interactions will be an important step in fully understanding the ecological role of predators and how ecological roles may vary with environmental and anthropogenic changes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The frequency of extreme environmental events is predicted to increase in the future. Understanding the short- and long-term impacts of these extreme events on large-bodied predators will provide insight into the spatial and temporal scales at which acute environmental disturbances in top-down processes may persist within and across ecosystems. Here, we use long-term studies of movements and age structure of an estuarine top predator—juvenile bull sharks Carcharhinus leucas—to identify the effects of an extreme ‘cold snap’ from 2 to 13 January 2010 over short (weeks) to intermediate (months) time scales. Juvenile bull sharks are typically year-round residents of the Shark River Estuary until they reach 3 to 5 yr of age. However, acoustic telemetry revealed that almost all sharks either permanently left the system or died during the cold snap. For 116 d after the cold snap, no sharks were detected in the system with telemetry or captured during longline sampling. Once sharks returned, both the size structure and abundance of the individuals present in the nursery had changed considerably. During 2010, individual longlines were 70% less likely to capture any sharks, and catch rates on successful longlines were 40% lower than during 2006−2009. Also, all sharks caught after the cold snap were young-of-the-year or neonates, suggesting that the majority of sharks in the estuary were new recruits and several cohorts had been largely lost from the nursery. The longer-term impacts of this change in bull shark abundance to the trophic dynamics of the estuary and the importance of episodic disturbances to bull shark population dynamics will require continued monitoring, but are of considerable interest because of the ecological roles of bull sharks within coastal estuaries and oceans.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coastal environments can be highly susceptible to environmental changes caused by anthropogenic pressures and natural events. Both anthropogenic and natural perturbations may directly affect the amount and the quality of water flowing through the ecosystem, both in the surface and subsurface and can subsequently, alter ecological communities and functions. The Florida Everglades and the Sian Ka'an Biosphere Reserve (Mexico) are two large ecosystems with an extensive coastal mangrove ecotone that represent a historically altered and pristine environment, respectively. Rising sea levels, climate change, increased water demand, and salt water intrusion are growing concerns in these regions and underlies the need for a better understanding of the present conditions. The goal of my research was to better understand various ecohydrological, environmental, and hydrogeochemical interactions and relationships in carbonate mangrove wetlands. A combination of aqueous geochemical analyses and visible and near-infrared reflectance data were employed to explore relationships between surface and subsurface water chemistry and spectral biophysical stress in mangroves. Optical satellite imagery and field collected meteorological data were used to estimate surface energy and evapotranspiration and measure variability associated with hurricanes and restoration efforts. Furthermore, major ionic and nutrient concentrations, and stable isotopes of hydrogen and oxygen were used to distinguish water sources and infer coastal groundwater discharge by applying the data to a combined principal component analysis-end member mixing model. Spectral reflectance measured at the field and satellite scales were successfully used to estimate surface and subsurface water chemistry and model chloride concentrations along the southern Everglades. Satellite imagery indicated that mangrove sites that have less tidal flushing and hydrogeomorphic heterogeneity tend to have more variable evapotranspiration and soil heat flux in response to storms and restoration. Lastly, water chemistry and multivariate analyses indicated two distinct fresh groundwater sources that discharge to the phosphorus-limited estuaries and bays of the Sian Ka'an Biopshere Reserve; and that coastal groundwater discharge was an important source for phosphorus. The results of the study give us a better understanding of the ecohydrological and hydrogeological processes in carbonate mangrove environments that can be then be extrapolated to similar coastal ecosystems in the Caribbean.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Everglades is a sub-tropical coastal wetland characterized among others by its hydrological features and deposits of peat. Formation and preservation of organic matter in soils and sediments in this wetland ecosystem is critical for its sustainability and hydrological processes are important divers in the origin, transport and fate of organic matter. With this in mind, organic matter dynamics in the greater Florida Everglades was studied though various organic geochemistry techniques, especially biomarkers, bulk and compound specific δ13C and δD isotope analysis. The main objectives were focused on how different hydrological regimes in this ecosystem control organic matter dynamics, such as the mobilization of particulate organic matter (POM) in freshwater marshes and estuaries, and how organic geochemistry techniques can be applied to reconstruct Everglades paleo-hydrology. For this purpose organic matter in typical vegetation, floc, surface soils, soil cores, and estuarine suspended particulates were characterized in samples selected along hydrological gradients in the Water Conservation Area 3, Shark River Slough and Taylor Slough. ^ This research focused on three general themes: (1) Assessment of the environmental dynamics and source-specific particulate organic carbon export in a mangrove-dominated estuary. (2) Assessment of the origin, transport and fate of organic matter in freshwater marsh. (3) Assessment of historical changes in hydrological conditions in the Everglades (paleo-hydrology) though biomarkes and compound specific isotope analyses. This study reports the first estimate of particulate organic carbon loss from mangrove ecosystems in the Everglades, provides evidence for particulate organic matter transport with regards to the formation of ridge and slough landscapes in the Everglades, and demonstrates the applicability of the combined biomarker and compound-specific stable isotope approach as a means to generate paleohydrological data in wetlands. The data suggests that: (1) Carbon loss from mangrove estuaries is roughly split 50/50 between dissolved and particulate carbon; (2) hydrological remobilization of particulate organic matter from slough to ridge environments may play an important role in the maintenance of the Everglades freshwater landscape; and (3) Historical changes in hydrology have resulted in significant vegetation shifts from historical slough type vegetation to present ridge type vegetation. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Current water management practices in South Florida have negatively impacted many species inhabiting Florida Bay. Variable and high salinity has been identified as a key stressor in these estuaries. The comprehensive Everglades Restoration Plan (CERP) includes water redistribution projects that will restore natural freshwater flows to northeastern Florida Bay. My studies focused on the following central theme and hypotheses: Biological performance measures (i.e., growth, reproduction, survival), behavior (i.e., habitat preference and locomotor behavior) and diversity of estuarine fish will be controlled by changes in salinity and water quality that will occur as a result of the restoration of freshwater flow to the bay. A series of acute and subchronic physiological toxicity studies were conducted to determine the effects of salinity changes on the life stages (embryo/larval, juvenile, adult) and fecundity of four native estuarine fish (Cyprinodon variegatus, Floridichthys carpio, Poecilia latipinna, and Gambusia holbrooki). Fishe were exposed to a range of salinity concentrations (freshwater to hypersaline) based on salinity profiles in the study areas. Growth (length, weight) and survival were measured. Salinity trials included both rapid and gradual change events. Results show negative effects of acute, abrupt salinity changes on fish survival, development and reproductive success as a result of salinity stress. Other studies targeted reproduction and critical embryo-larval/neonate development as key areas for detecting long-term population effects of salinity change in Florida Bay. Adults of C. variegatus and P. latipinna were also examined for behavioral responses to pulsed salinity changes. These responses include changes in swimming performance, locomotor behavior and zone preference. Finally, an ecological risk assessment was conducted for adverse salinity conditions in northeastern Florida Bay. Using the U.S. EPA's framework, the risk to estuarine fish species diversity was assessed against regional salinity profiles from a 17-year database. Based on the risk assessment, target salinity profiles for these areas are recommended for managers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Estuaries are dynamic on many spatial and temporal scales. Distinguishing effects of unpredictable events from cyclical patterns can be challenging but important to predict the influence of press and pulse drivers in the face of climate change. Diatom assemblages respond rapidly to changing environmental conditions and characterize change on multiple time scales. The goals of this research were to 1) characterize diatom assemblages in the Charlotte Harbor watershed, their relationships with water quality parameters, and how they change in response to climate; and 2) use assemblages in sediment cores to interpret past climate changes and tropical cyclone activity. ^ Diatom assemblages had strong relationships with salinity and nutrient concentrations, and a quantitative tool was developed to reconstruct past values of these parameters. Assemblages were stable between the wet and dry seasons, and were more similar to each other than to assemblages found following a tropical cyclone. Diatom assemblages following the storm showed a decrease in dispersion among sites, a pattern that was consistent on different spatial scales but may depend on hydrological management regimes. ^ Analysis of sediment cores from two southwest Florida estuaries showed that locally-developed diatom inference models can be applied with caution on regional scales. Large-scale climate changes were suggested by environmental reconstructions in both estuaries, but with slightly different temporal pacing. Estimates of salinity and nutrient concentrations suggested that major hydrological patterns changed at approximately 5.5 and 3 kyrs BP. A highly temporally-resolved sediment core from Charlotte Harbor provided evidence for past changes that correspond with known climate records. Diatom assemblages had significant relationships with the three-year average index values of the Atlantic Multidecadal Oscillation and the El Niño Southern Oscillation. Assemblages that predicted low salinity and high total phosphorus also had the lowest dispersion and corresponded with some major storms in the known record, which together may provide a proxy for evidence of severe storms in the paleoecological record. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The chemical composition of organic matter (Corg, Norg, d13C, d1SN, and n-alkanes) was studied in the top layer of bottom sediments of the East Siberian Sea. Possible ways were proposed to estimate the amount of the terrigenous component in their organic matter (OM). The fraction of terrigenous OM estimated by the combined use of genetic indicators varied from 15% in the eastern part of the sea, near the Long Strait, to 95% in the estuaries of the Indigirka and Kolyma rivers, averaging 62% over the sea area.