978 resultados para essential drug
Resumo:
In drug discovery, different methods exist to create new inhibitors possessing satisfactory biological activity. The multisubstrate adduct inhibitor (MAI) approach is one of these methods, which consists of a covalent combination between analogs of the substrate and the cofactor or of the multiple substrates used by the target enzyme. Adopted as the first line of investigation for many enzymes, this method has brought insights into the enzymatic mechanism, structure, and inhibitory requirements. In this review, the MAI approach, applied to different classes of enzyme, is reported from the point of view of biological activity.
Resumo:
This output is an invited and refereed chapter in the second of the two book length outputs resulting from the EU HUMAINE grant and follow-on grants. The book is in the OUP Affective Science Series and is intended to provide a theoretically oriented state of the art model for those working in the area of affective computing. Each chapter provides a synthesis of a specific area and presents new data/findings/approaches developed by the author(s) which take the area further. This chapter is in the section on ‘Approaches to developing expression corpora and databases.’ The chapter provides a critical synthesis of the issues involved in databases for affective computing and introduces the SEMAINE SAL Database, developed as an integral part of the EU SEMAINE Project (The Sensitive Agent Project 2008-2011) which is an interdisciplinary project. The project aimed to develop a computer interface that would allow a human to interact with an artificial agent in an emotional manner.
Resumo:
The receptor for advanced glycation end products (RAGE) is a pattern-recognition receptor that binds to diverse ligands and initiates a downstream proinflammatory signaling cascade. RAGE activation has been linked to diabetic complications, Alzheimer disease, infections, and cancers. RAGE is known to mediate cell signaling and downstream proinflammatory gene transcription activation, although the precise mechanism surrounding receptor-ligand interactions is still being elucidated. Recent fluorescence resonance energy transfer evidence indicates that RAGE may form oligomers on the cell surface and that this could be related to signal transduction. To investigate whether RAGE forms oligomers, protein-protein interaction assays were carried out. Here, we demonstrate the interaction between RAGE molecules via their N-terminal V domain, which is an important region involved in ligand recognition. By protein cross-linking using water-soluble and membrane-impermeable cross-linker bis(sulfosuccinimidyl) suberate and nondenaturing gels, we show that RAGE forms homodimers at the plasma membrane, a process potentiated by S100B and advanced glycation end products. Soluble RAGE, the RAGE inhibitor, is also capable of binding to RAGE, similar to V peptide, as shown by surface plasmon resonance. Incubation of cells with soluble RAGE or RAGE V domain peptide inhibits RAGE dimerization, subsequent phosphorylation of intracellular MAPK proteins, and activation of NF-kappa B pathways. Thus, the data indicate that dimerization of RAGE represents an important component of RAGE-mediated cell signaling.
Resumo:
Chloramphenicol is a broad-spectrum antibiotic shown to have specific activity against a wide variety of organisms that are causative agents of several disease conditions in domestic animals. Chloramphenicol has been banned for use in food-producing animals for its serious adverse toxic effects in humans. Due to the harmful effects of chloramphenicol residues livestock products should be free of any traces of these residues. Several analytical methods are available for chloramphenicol analysis but sensitive methods are required in order to ensure that no traces of chloramphenicol residues are present in edible animal products. In order to prevent the illegal use of chloramphenicol, regulatory control of its residues in food of animal origin is essential. A competitive enzyme-linked immunosorbent assay for chloramphenicol has been locally developed and optimized for the detection of chloramphenicol in sheep serum. In the assay, chloramphenicol in the test samples and that in chloramphenicol-horseradish peroxidase conjugate compete for antibodies raised against the drug in camels and immobilized on a microtitre plate. Tetramethylbenzidine-hydrogen peroxide (TMB/H2O2) is used as chromogen-substrate system. The assay has a detection limit of 0.1 ng/mL of serum with a high specificity for chloramphenicol. Cross-reactivity with florfenicol, thiamphenicol, penicillin, tetracyclines and sulfamethazine was not observed. The assay was able to detect chloramphenicol concentrations in normal sheep serum for at least 1 week after intramuscular injection with the drug at a dose of 25 mg/kg body weight (b.w.). The assay can be used as a screening tool for chloramphenicol use in animals.