966 resultados para equação de Klein-Gordon


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cartilage defects heal imperfectly and osteoarthritic changes develop frequently as a result. Although the existence of specific behaviours of chondrocytes derived from various depth-related zones in vitro has been known for over 20 years, only a relatively small body of in vitro studies has been performed with zonal chondrocytes and current clinical treatment strategies do not reflect these native depth-dependent (zonal) differences. This is surprising since mimicking the zonal organization of articular cartilage in neo-tissue by the use of zonal chondrocyte subpopulations could enhance the functionality of the graft. Although some research groups including our own have made considerable progress in tailoring culture conditions using specific growth factors and biomechanical loading protocols, we conclude that an optimal regime has not yet been determined. Other unmet challenges include the lack of specific zonal cell sorting protocols and limited amounts of cells harvested per zone. As a result, the engineering of functional tissue has not yet been realized and no long-term in vivo studies using zonal chondrocytes have been described. This paper critically reviews the research performed to date and outlines our view of the potential future significance of zonal chondrocyte populations in regenerative approaches for the treatment of cartilage defects. Secondly, we briefly discuss the capabilities of additive manufacturing technologies that can not only create patient-specific grafts directly from medical imaging data sets but could also more accurately reproduce the complex 3D zonal extracellular matrix architecture using techniques such as hydrogel-based cell printing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Currently, well-established clinical therapeutic approaches for bone reconstruction are restricted to the transplantation of autografts and allografts, and the implantation of metal devices or ceramic-based implants to assist bone regeneration. These standard techniques face significant disadvantages. As a result, research has focused on the development of alternative therapeutic concepts aiming to design and engineer unparalleled structural and functional bone grafts. Substantial academic and commercial interest has been sparked in bone engineering methods to stimulate, control and eventually replicate key events of bone regeneration ex vivo. Over the years, this interest has further increased and bone tissue engineering has now become a well-recognized research discipline in the area of regenerative medicine. The following chapter gives an overview of bone tissue engineering principles. It focuses on research related to the combination of scaffolds with multipotent precursor cells, such as bone marrow-derived mesenchymal stem cells or human umbilical cord perivascular cells, and the clinical applications of these tissue engineered bone constructs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Because of the limited availability of donor cartilage for resurfacing defects in articular surfaces, there is tremendous interest in the in vitro bioengineering of cartilage replacements for clinical applications. However, attaining mechanical properties in engineered cartilaginous constructs that approach those of native cartilage has not been previously achieved when constructs are cultured under free-swelling conditions. One approach toward stimulating the development of constructs that are mechanically more robust is to expose them to physical environments that are similar, in certain ways, to those encountered by native cartilage. This is a strategy motivated by observations in numerous short-term experiments that certain mechanical signals are potent stimulators of cartilage metabolism. On the other hand, excess mechanical loading can have a deleterious effect on cartilage. Culture conditions that include a physical stimulation component are made possible by the use of specialized bioreactors. This chapter addresses some of the issues involved in using bioreactors as integral components of cartilage tissue engineering and in studying the physical regulation of cartilage. We first consider the generation of cartilaginous constructs in vitro. Next we describe the rationale and design of bioreactors that can impart either mechanical deformation or fluid-induced mechanical signals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: Heart failure (HF) is the leading cause of hospitalization and significant burden to the health care system in Australia. To reduce hospitalizations, multidisciplinary approaches and enhance self-management programs have been strongly advocated for HF patients globally. HF patients who can effectively manage their symptoms and adhere to complex medicine regimes will experience fewer hospitalizations. Research indicates that information technologies (IT) have a significant role in providing support to promote patients' self-management skills. The iPad utilizes user-friendly interfaces and to date an application for HF patient education has not been developed. This project aimed to develop the HF iPad teaching application in the way that would be engaging, interactive and simple to follow and usable for patients' carers and health care workers within both the hospital and community setting. Methods: The design for the development and evaluation of the application consisted of two action research cycles. Each cycle included 3 phases of testing and feedback from three groups comprising IT team, HF experts and patients. All patient education materials of the application were derived from national and international evidence based practice guidelines and patient self-care recommendations. Results: The iPad application has animated anatomy and physiology that simply and clearly teaches the concepts of the normal heart and the heart in failure. Patient Avatars throughout the application can be changed to reflect the sex and culture of the patient. There is voice-over presenting a script developed by the heart failure expert panel. Additional engagement processes included points of interaction throughout the application with touch screen responses and the ability of the patient to enter their weight and this data is secured and transferred to the clinic nurse and/or research data set. The application has been used independently, for instance, at home or using headphones in a clinic waiting room or most commonly to aid a nurse-led HF consultation. Conclusion: This project utilized iPad as an educational tool to standardize HF education from nurses who are not always heart failure specialists. Furthermore, study is currently ongoing to evaluate of the effectiveness of this tool on patient outcomes and to develop several specifically designed cultural adaptations [Hispanic (USA), Aboriginal (Australia), and Maori (New Zealand)].

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Stromal signalling increases the lateral cell adhesions of prostate epithelial cells grown in 3D culture. The aim of this study was to use microarray analysis to identify significant epithelial signalling pathways and genes in this process. METHODS: Microarray analysis was used to identify genes that were differentially expressed when epithelial cells were grown in 3D Matrigel culture with stromal co-culture compared to without stroma. Two culture models were employed: primary epithelial cells (ten samples) and an epithelial cell line (three experiments). A separate microarray analysis was performed on each model system and then compared to identify tissue-relevant genes in a cell line model. RESULTS: TGF beta signalling was significantly ranked for both model systems and in both models the TGF beta signalling gene SOX4 was significantly down regulated. Analysis of all differentially expressed genes to identify genes that were common to both models found several morphology related gene clusters; actin binding (DIAPH2, FHOD3, ABLIM1, TMOD4, MYH10), GTPase activator activity (BCR, MYH10), cytoskeleton (MAP2, MYH10, TMOD4, FHOD3), protein binding (ITGA6, CD44), proteinaceous extracellular matrix (NID2, CILP2), ion channel/ ion transporter activity (CACNA1C, CACNB2, KCNH2, SLC8A1, SLC39A9) and genes associated with developmental pathways (POFUT1, FZD2, HOXA5, IRX2, FGF11, SOX4, SMARCC1). CONCLUSIONS: In 3D prostate cultures, stromal cells increase lateral epithelial cell adhesions. We show that this morphological effect is associated with gene expression changes to TGF beta signalling, cytoskeleton and anion activity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study investigated the association between outdoor work and response to a behavioural skin cancer early detection intervention among men 50 years or older. Overall, 495 men currently working in outdoor, mixed or indoor occupations were randomised to a video-based intervention or control group. At 7 months post intervention, indoor workers reported the lowest proportion of whole-body skin self-examination (wbSSE; 20%). However, at 13 months mixed workers engaged more commonly in wbSSE (36%) compared to indoor (31%) and outdoor (32%) workers. In adjusted analysis, the uptake of early detection behaviours during the trial did not differ between men working in different settings. Outdoor workers compared to men in indoor or mixed work settings were similar in their response to an intervention encouraging uptake of secondary skin cancer prevention behaviours during this intervention trial.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Skin Awareness DVD is a component of the research project 'The Skin Awareness Study'. This study is a randomozed controlled trial assessing the effectiveness of a video-delivered intervention designed to increase the prevalence of skin self-examinations and rapid presentation to a doctor among men 50 years and above.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This pilot study aimed to compare the effect of companion robots (PARO) to participation in an interactive reading group on emotions in people living with moderate to severe dementia in a residential care setting. A randomized crossover design, with PARO and reading control groups, was used. Eighteen residents with mid- to late-stage dementia from one aged care facility in Queensland, Australia, were recruited. Participants were assessed three times using the Quality of Life in Alzheimer’s Disease, Rating Anxiety in Dementia, Apathy Evaluation, Geriatric Depression, and Revised Algase Wandering Scales. PARO had a moderate to large positive influence on participants’ quality of life compared to the reading group. The PARO intervention group had higher pleasure scores when compared to the reading group. Findings suggest PARO may be useful as a treatment option for people with dementia; however, the need for a larger trial was identified.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Orthopaedics and Trauma Queensland, a Centre for Research and Education in Musculoskeletal Disorders, is an internationally recognised research group that is developing into an international leader in research and education. It provides a stimulus for research, education and clinical application within the international orthopaedic and trauma communities. Orthopaedics and Trauma Queensland develops and promotes the innovative use of engineering and technology, in collaboration with surgeons, to provide new techniques, materials, procedures and medical devices. Its integration with clinical practice and strong links with hospitals ensure that the research will be translated into practical outcomes for patients. The group undertakes clinical practice in orthopaedics and trauma and applies core engineering skills to challenges in medicine. The research is built on a strong foundation of knowledge in biomedical engineering, and incorporates expertise in cell biology, mathematical modelling, human anatomy and physiology and clinical medicine in orthopaedics and trauma. New knowledge is being developed and applied to the full range of orthopaedic diseases and injuries, such as knee and hip replacements, fractures and spinal deformities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper is concerned with the unsupervised learning of object representations by fusing visual and motor information. The problem is posed for a mobile robot that develops its representations as it incrementally gathers data. The scenario is problematic as the robot only has limited information at each time step with which it must generate and update its representations. Object representations are refined as multiple instances of sensory data are presented; however, it is uncertain whether two data instances are synonymous with the same object. This process can easily diverge from stability. The premise of the presented work is that a robot's motor information instigates successful generation of visual representations. An understanding of self-motion enables a prediction to be made before performing an action, resulting in a stronger belief of data association. The system is implemented as a data-driven partially observable semi-Markov decision process. Object representations are formed as the process's hidden states and are coordinated with motor commands through state transitions. Experiments show the prediction process is essential in enabling the unsupervised learning method to converge to a solution - improving precision and recall over using sensory data alone.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The challenge of persistent appearance-based navigation and mapping is to develop an autonomous robotic vision system that can simultaneously localize, map and navigate over the lifetime of the robot. However, the computation time and memory requirements of current appearance-based methods typically scale not only with the size of the environment but also with the operation time of the platform; also, repeated revisits to locations will develop multiple competing representations which reduce recall performance. In this paper we present a solution to the persistent localization, mapping and global path planning problem in the context of a delivery robot in an office environment over a one-week period. Using a graphical appearance-based SLAM algorithm, CAT-Graph, we demonstrate constant time and memory loop closure detection with minimal degradation during repeated revisits to locations, along with topological path planning that improves over time without using a global metric representation. We compare the localization performance of CAT-Graph to openFABMAP, an appearance-only SLAM algorithm, and the path planning performance to occupancy-grid based metric SLAM. We discuss the limitations of the algorithm with regard to environment change over time and illustrate how the topological graph representation can be coupled with local movement behaviors for persistent autonomous robot navigation.