977 resultados para enzyme immunoassay for rotavirus and adenovirus
Resumo:
Our goal was to evaluate the diagnostic utility of C-reactive protein (CRP) alone or combined with clinical probability assessment in patients with suspected pulmonary embolism (PE), and to compare its performance to a D-dimer assay. We conducted a prospective study in which we performed a common immuno-turbidimetric CRP test and a rapid enzyme-linked immunosorbent assay (ELISA) D-dimer test in 259 consecutive outpatients with suspected PE at the emergency department of a teaching hospital. We assessed clinical probability of PE by a validated prediction rule overridden by clinical judgment. Patients with D-dimer levels > or = 500 microg/l underwent a work-up consisting of lower-limb venous ultrasound, spiral computerized tomography, ventilation-perfusion scan, or pulmonary angiography. Patients were followed up for three months. Seventy-seven (30%) of the patients had PE. The CRP alone had a sensitivity of 84% (95% confidence interval [CI).: 74 to 92%) and a negative predictive value (NPV) of 87% (95% CI: 78 to 93%) at a cutpoint of 5 mg/l. Overall, 61 (24%) patients with a low clinical probability of PE had a CRP < 5 mg/l. Due to the low prevalence of PE (9%) in this subgroup, the NPV increased to 97% (95% CI: 89 to 100%). The D-dimer (cutpoint 500 micro g/l) showed a sensitivity of 100% (95% CI: 95 to 100%) and a NPV of 100% (95% CI: 94 to 100%) irrespective of clinical probability and accurately rule out PE in 56 (22%) patients. Standard CRP tests alone or combined with clinical probability assessment cannot safely exclude PE.
Resumo:
The objective of this work was to investigate the influence of 1-methylcyclopropene (1-MCP) at 300 nL L-1 on activities of cell wall hidrolytic enzymes and pectin breakdown changes which Sapodilla (Manilkara zapota cv. Itapirema 31) cell wall undergoes during ripening. Sapodilla were treated with ethylene antagonist 1-MCP at 300 nL L-1 for 12 hours and then, stored under a modified atmosphere at 25º C for 23 days. Firmness, total and soluble pectin and cell wall enzymes were monitored during storage. 1-MCP at 300 nL L-1 for 12 hours delayed significantly softening of sapodilla for 11 days at 25º C. 1-MCP postharvest treatment affected the activities of cell wall degrading enzymes pectinmethylesterase and polygalacturonase and completely suppressed increases in beta-galactosidase for 8 days, resulting in less pectin solubilization. Beta-galactosidase seems relevant to softening of sapodilla and is probably responsible for modification of both pectin and xyloglucan-cellulose microfibril network.
Resumo:
Ubiquitination, deubiquitination, and the formation of specific ubiquitin chain topologies have been implicated in various cellular processes. Little is known, however, about the role of ubiquitin in the development of cellular organelles. Here, we identify and characterize the deubiquitinating enzyme AMSH3 from Arabidopsis thaliana. AMSH3 hydrolyzes K48- and K63-linked ubiquitin chains in vitro and accumulates both ubiquitin chain types in vivo. amsh3 mutants fail to form a central lytic vacuole, accumulate autophagosomes, and mis-sort vacuolar protein cargo to the intercellular space. Furthermore, AMSH3 is required for efficient endocytosis of the styryl dye FM4-64 and the auxin efflux facilitator PIN2. We thus present evidence for a role of deubiquitination in intracellular trafficking and vacuole biogenesis.
Resumo:
Angioedema is a rare side effect of angiotensin converting enzyme (ACE) inhibitors. Its cause is probably related to the accumulation of bradykinin and substance P, i.e. two proinflammatory peptides normally inactivated by ACE. Angioedema occurs most of the time at the early phase of treatment, but may also develop during long-term treatment. It might involve the gastro-intestinal tract, leading to abdominal pain, vomiting and/or diarrhea, as well as pancreatitis. Dipeptidyl-ptidase-4 (DPP-4) is another enzyme allowing the degradation of bradykinin and substance P. Co-administering an ACE inhibitor and a DPP-4 inhibitor (as an antidiabetic agent) increases significantly the risk of angioedema.
Resumo:
Proteoglycans (PGs) are a major component of the extracellular matrix in many tissues and function as structural and regulatory molecules. PGs are composed of core proteins and glycosaminoglycan (GAG) side chains. The biosynthesis of GAGs starts with the linker region that consists of four sugar residues and is followed by repeating disaccharide units. By exome sequencing, we found that B3GALT6 encoding an enzyme involved in the biosynthesis of the GAG linker region is responsible for a severe skeletal dysplasia, spondyloepimetaphyseal dysplasia with joint laxity type 1 (SEMD-JL1). B3GALT6 loss-of-function mutations were found in individuals with SEMD-JL1 from seven families. In a subsequent candidate gene study based on the phenotypic similarity, we found that B3GALT6 is also responsible for a connective tissue disease, Ehlers-Danlos syndrome (progeroid form). Recessive loss-of-function mutations in B3GALT6 result in a spectrum of disorders affecting a broad range of skeletal and connective tissues characterized by lax skin, muscle hypotonia, joint dislocation, and spinal deformity. The pleiotropic phenotypes of the disorders indicate that B3GALT6 plays a critical role in a wide range of biological processes in various tissues, including skin, bone, cartilage, tendon, and ligament.
Resumo:
GLUT8 is a high-affinity glucose transporter present mostly in testes and a subset of brain neurons. At the cellular level, it is found in a poorly defined intracellular compartment in which it is retained by an N-terminal dileucine motif. Here we assessed GLUT8 colocalization with markers for different cellular compartments and searched for signals, which could trigger its cell surface expression. We showed that when expressed in PC12 cells, GLUT8 was located in a perinuclear compartment in which it showed partial colocalization with markers for the endoplasmic reticulum but not with markers for the trans-Golgi network, early endosomes, lysosomes, and synaptic-like vesicles. To evaluate its presence at the plasma membrane, we generated a recombinant adenovirus for the expression of GLUT8 containing an extracellular myc epitope. Cell surface expression was evaluated by immunofluorescence microscopy of transduced PC12 cells or primary hippocampal neurons exposed to different stimuli. Those included substances inducing depolarization, activation of protein kinase A and C, activation or inhibition of tyrosine kinase-linked signaling pathways, glucose deprivation, AMP-activated protein kinase stimulation, and osmotic shock. None of these stimuli-induced GLUT8 cell surface translocation. Furthermore, when GLUT8myc was cotransduced with a dominant-negative form of dynamin or GLUT8myc-expressing PC-12 cells or neurons were incubated with an anti-myc antibody, no evidence for constitutive recycling of the transporter through the cell surface could be obtained. Thus, in cells normally expressing it, GLUT8 was associated with a specific intracellular compartment in which it may play an as-yet-uncharacterized role.
Resumo:
While there is evidence that the two ubiquitously expressed thyroid hormone (T3) receptors, TRalpha1 and TRbeta1, have distinct functional specificities, the mechanism by which they discriminate potential target genes remains largely unexplained. In this study, we demonstrate that the thyroid hormone response elements (TRE) from the malic enzyme and myelin basic protein genes (METRE and MBPTRE) respectively, are not functionally equivalent. The METRE, which is a direct repeat motif with a 4-base pair gap between the two half-site hexamers binds thyroid hormone receptor as a heterodimer with 9-cis-retinoic acid receptor (RXR) and mediates a high T3-dependent activation in response to TRalpha1 or TRbeta1 in NIH3T3 cells. In contrast, the MBPTRE, which consists of an inverted palindrome formed by two hexamers spaced by 6 base pairs, confers an efficient transactivation by TRbeta1 but a poor transactivation by TRalpha1. While both receptors form heterodimers with RXR on MBPTRE, the poor transactivation by TRalpha1 correlates also with its ability to bind efficiently as a monomer. This monomer, which is only observed with TRalpha1 bound to MBPTRE, interacts neither with N-CoR nor with SRC-1, explaining its functional inefficacy. However, in Xenopus oocytes, in which RXR proteins are not detectable, the transactivation mediated by TRalpha1 and TRbeta1 is equivalent and independent of a RXR supply, raising the question of the identity of the thyroid hormone receptor partner in these cells. Thus, in mammalian cells, the binding characteristics of TRalpha1 to MBPTRE (i.e. high monomer binding efficiency and low transactivation activity) might explain the particular pattern of T3 responsiveness of MBP gene expression during central nervous system development.
Resumo:
Exercise is classically associated with muscular soreness, presenting one to two days later, delayed onset muscular soreness. Blood muscle enzymes and protein elevations are characteristic, and may cause renal failure. Creatin phosphokinase peak appears on the fourth day and depends on exercise type and individual parameters. This effect is attenuated with repeated bouts, by habituation. Metabolic complications are rare. The knowledge of this reaction, even with common exercises, allows to postpone investigations for a complex metabolic disorder, or to avoid stopping a medication for fear of a side effect, as with statins. Indeed, it is necessary to wait for seven days without any exercise before interpreting an elevated CK result.
Resumo:
Spodoptera frugiperda is a pest of great economic importance in the Americas. It is attacked by several species of parasitoids, which act as biological control agents. Parasitoids are morphologically identifiable as adults, but not as larvae. Laboratory rearing conditions are not always optimal to rear out parasitic wasps from S. frugiperda larvae collected from wild populations, and it frequently happens that parasitoids do not complete their life cycle and stop developing at the larval stage. Therefore, we explored ways to identify parasitoid larvae using molecular techniques. Sequencing is one possible technique, yet it is expensive. Here we present an alternate, cheaper way of identifying seven species of parasitoids (Cotesia marginiventris, Campoletis sonorensis, Pristomerus spinator, Chelonus insularis, Chelonus cautus, Eiphosoma vitticolle and Meteorus laphygmae) using PCR amplification of COI gene followed by a digestion with a combination of four restriction endonucleases. Each species was found to exhibit a specific pattern when the amplification product was run on an agarose gel. Identifying larvae revealed that conclusions on species composition of a population of parasitic wasps can be biased if only the emerging adults are taken into account.
Resumo:
Angio-oedema (AE) is a known adverse effect of angiotensin converting enzyme inhibitor (ACE-I) therapy. Over the past several decades, evidence of failure to diagnose this important and potentially fatal reaction is commonly found in the literature. Because this reaction is often seen first in the primary care setting, a review was undertaken to analyse and document the keys to both diagnostic criteria as well as to investigate potential risk factors for ACE-I AE occurrence. A general review of published literature was conducted through Medline, EMBASE, and the Cochrane Database, targeting ACE-I-related AE pathomechanism, diagnosis, epidemiology, risk factors, and clinical decision making and treatment. The incidence and severity of AE appears to be on the rise and there is evidence of considerable delay in diagnosis contributing to significant morbidity and mortality for patients. The mechanism of AE due to ACE-I drugs is not fully understood, but some genomic and metabolomic information has been correlated. Additional epidemiologic data and clinical treatment outcome predictors have been evaluated, creating a basis for future work on the development of clinical prediction tools to aid in risk identification and diagnostic differentiation. Accurate recognition of AE by the primary care provider is essential to limit the rising morbidity associated with ACE-I treatment-related AE. Research findings on the phenotypic indicators relevant to this group of patients as well as basic research into the pathomechanism of AE are available, and should be used in the construction of better risk analysis and clinical diagnostic tools for ACE-I AE.
Resumo:
ABSTRACT The flavor quality of citrus fruits is largely determined by the sugar-acid ratio, but it remains uncertain how sugar- and/or acid-metabolizing enzymes regulate the sugar-acid ratio of navel oranges and further affect the fruit quality. In the present study, Robertson navel oranges (Citrus sinesis Osb.) were collected from six representative habitats in three eco-regions of Sichuan, China. The changes in the sugar-acid ratio and the activities of sucrose phosphate synthase (SPS), sucrose synthase (SS), cytosolic cio-aconitase (ACO), and isocitrate dehydrogenase (IDH) were examined in navel oranges during fruit development. The results indicated that the sugar-acid ratio of fruits in different eco-regions changed significantly from 150 days after full bloom. The SPS and cytosolic ACO fruit activities had minor changes among different ecoregions throughout the experimental periods, whereas the activities of SS and IDH changed significantly in fruits among three eco-regions. Furthermore, the sugar-acid ratio and the activities of SS in the synthetic direction and IDH were the highest in south subtropics and the lowest in north mid-subtropics, probably due to the effects of climate conditions and/or other relevant eco-factors. It demonstrated that SS in the synthetic direction and IDH were of greater importance in regulating the sugar-acid ratio of navel oranges in different eco-regions, which provided new insights into the factors that determine the flavor quality of navel oranges and valuable data for guiding relevant agricultural practices.