981 resultados para energy restriction


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The RILEM work-of-fracture method for measuring the specific fracture energy of concrete from notched three-point bend specimens is still the most common method used throughout the world, despite the fact that the specific fracture energy so measured is known to vary with the size and shape of the test specimen. The reasons for this variation have also been known for nearly two decades, and two methods have been proposed in the literature to correct the measured size-dependent specific fracture energy (G(f)) in order to obtain a size-independent value (G(F)). It has also been proved recently, on the basis of a limited set of results on a single concrete mix with a compressive strength of 37 MPa, that when the size-dependent G(f) measured by the RILEM method is corrected following either of these two methods, the resulting specific fracture energy G(F) is very nearly the same and independent of the size of the specimen. In this paper, we will provide further evidence in support of this important conclusion using extensive independent test results of three different concrete mixes ranging in compressive strength from 57 to 122 MPa. (c) 2013 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thermodynamic properties of Ca7V4O17 are measured for the first time using a solid-state electrochemical cell incorporating single crystal of CaF2 as the electrolyte over the temperature range from (900 to 1175) K. An equimolar mixture of CaO and CaF2 is used as the reference electrode and a mixture of Ca3V2O8, Ca7V4O17 and CaF2 as the measuring electrode. Both the electrodes are placed under flowing oxygen gas at ambient pressure. The standard Gibbs energy change for the reaction: 2Ca(3)V(2)O(8) + CaO -> Ca7V4O17; which is related to the chemical potential of CaO in the two-phase region (Ca3V2O8 + Ca7V4O17) of the pseudo-binary system CaO + V2O5, is obtained from the electromotive force of the cell as: Delta(r)G(o) +/- 127/(J . mol(-1)) = Delta mu(CaO) = -11453 + 8.273(T/K). The derived standard enthalpy of formation of Ca7V4O17 from elements in their normal standard states is ( 8208.97 +/- 8) kJ . mol (1) and its standard entropy is (560.05 +/- 7.5) J . K (1) . mol (1), both at T = 298.15 K. The results indicate that Ca7V4O17 decomposes into Ca3V2O8 and CaO at T = (1384 +/- 3) K.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper illustrates a Wavelet Coefficient based approach using experiments to understand the sensitivity of ultrasonic signals due to parametric variation of a crack configuration in a metal plate. A PZT patch sensor/actuator system integrated to a metal plate with through-thickness crack is used. The proposed approach uses piezoelectric patches, which can be used to both actuate and sense the ultrasonic signals. While this approach leads to more flexibility and reduced cost for larger scalability of the sensor/actuator network, the complexity of the signals increases as compared to what is encountered in conventional ultrasonic NDE problems using selective wave modes. A Damage Index (DI) has been introduced, which is function of wavelet coefficient. Experiments have been carried out for various crack sizes, crack orientations and band-limited tone-burst signal through FIR filter. For a 1 cm long crack interrogated with 20 kHz tone-burst signal, the Damage Index (DI) for the horizontal crack orientation increases by about 70% with respect to that for 135 degrees oriented crack and it increases by about 33% with respect to the vertically oriented crack. The detailed results reported in this paper is a step forward to developing computational schemes for parametric identification of damage using sensor/actuator network and ultrasonic wave.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ionic Polymer Metal Composites (IPMCs) are a class of Electro-Active Polymers (EAPs) consisting of a base polymer (usually Nafion), sandwiched between thin films of electrodes and an electrolyte. Apart from fuel cell like proton exchange process in Nafion, these IPMCs can act both as an actuator and a sensor. Typically, IPMCs have been known for their applications in fuel cell technology and in artificial muscles for robots. However, more recently, sensing properties of IPMC have opened up possibilities of mechanical energy harvesting. In this paper, we consider a bi-layer stack of IPMC membranes where fluid flow induced cyclic oscillation allows collection of electronic charge across a pair of functionalized electrode on the surface of IPMC layers/stacks. IPMCs work well in hydrated environment; more specifically, in presence of an electrolyte, and therefore, have great potential in underwater applications like hydrodynamic energy harvesting. Hydrodynamic forces produce bending deformation, which can induce transport of cations via polymer chains of the base polymer of Nafion or PTFE. In our experimental set-up, the deformation is induced into the array of IPMC membranes immersed in electrolyte by water waves caused by a plunger connected to a stepper motor. The frequency and amplitude of the water waves is controlled by the stepper motor through a micro-controller. The generated electric power is measured across a resistive load. Few orders of magnitude increase in the harvested power density is observed. Analytical modeling approach used for power and efficiency calculations are discussed. The observed electro-mechanical performance promises a host of underwater energy harvesting applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Single receive antenna selection (AS) is a popular method for obtaining diversity benefits without the additional costs of multiple radio receiver chains. Since only one antenna receives at any time, the transmitter sends a pilot multiple times to enable the receiver to estimate the channel gains of its N antennas to the transmitter and select an antenna. In time-varying channels, the channel estimates of different antennas are outdated to different extents. We analyze the symbol error probability (SEP) in time-varying channels of the N-pilot and (N+1)-pilot AS training schemes. In the former, the transmitter sends one pilot for each receive antenna. In the latter, the transmitter sends one additional pilot that helps sample the channel fading process of the selected antenna twice. We present several new results about the SEP, optimal energy allocation across pilots and data, and optimal selection rule in time-varying channels for the two schemes. We show that due to the unique nature of AS, the (N+1)-pilot scheme, despite its longer training duration, is much more energy-efficient than the conventional N-pilot scheme. An extension to a practical scenario where all data symbols of a packet are received by the same antenna is also investigated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Before installation, a voltage source converter is usually subjected to heat-run test to verify its thermal design and performance under load. For heat-run test, the converter needs to be operated at rated voltage and rated current for a substantial length of time. Hence, such tests consume huge amount of energy in case of high-power converters. Also, the capacities of the source and loads available in the research and development (R&D) centre or the production facility could be inadequate to conduct such tests. This paper proposes a method to conduct heat-run tests on high-power, pulse width modulated (PWM) converters with low energy consumption. The experimental set-up consists of the converter under test and another converter (of similar or higher rating), both connected in parallel on the ac side and open on the dc side. Vector-control or synchronous reference frame control is employed to control the converters such that one draws certain amount of reactive power and the other supplies the same; only the system losses are drawn from the mains. The performance of the controller is validated through simulation and experiments. Experimental results, pertaining to heat-run tests on a high-power PWM converter, are presented at power levels of 25 kVA to 150 kVA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Extending the previous work of Lan et al. J. Chem. Phys., 122, 224315 (2005)], a multi-state potential model for the H atom photodissociation is presented. All three ``disappearing coordinates'' of the departing H atom have been considered. Ab initio CASSCF computations have been carried out for the linear COH geometry of C-2v symmetry, and for several COH angles with the OH group in the ring plane and also perpendicular to the ring plane. By keeping the C6H5O fragment frozen in a C-2v-constrained geometry throughout, we have been able to apply symmetry-based simplifications in the constructions of a diabatic model. This model is able to capture the overall trends of twelve adiabats at both torsional limits for a wide range of COH bend angles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ion implantation experiments were carried out on amorphous (30 K) and crystalline (80 K) solid CO2 using both reactive (D+, H+) and non-reactive (He+) ions, simulating different irradiation environments on satellite and dust grain surfaces. Such ion irradiation synthesized several new species in the ice including ozone (O-3), carbon trioxide (CO3), and carbon monoxide (CO) the main dissociation product of carbon dioxide. The yield of these products was found to be strongly dependent upon the ion used for irradiation and the sample temperature. Ion implantation changes the chemical composition of the ice with recorded infrared spectra clearly showing the coexistence of D-3h and C-2v isomers of CO3, for the first time, in ion irradiated CO2 ice. (C) 2013 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Identifying the determinants of neuronal energy consumption and their relationship to information coding is critical to understanding neuronal function and evolution. Three of the main determinants are cell size, ion channel density, and stimulus statistics. Here we investigate their impact on neuronal energy consumption and information coding by comparing single-compartment spiking neuron models of different sizes with different densities of stochastic voltage-gated Na+ and K+ channels and different statistics of synaptic inputs. The largest compartments have the highest information rates but the lowest energy efficiency for a given voltage-gated ion channel density, and the highest signaling efficiency (bits spike(-1)) for a given firing rate. For a given cell size, our models revealed that the ion channel density that maximizes energy efficiency is lower than that maximizing information rate. Low rates of small synaptic inputs improve energy efficiency but the highest information rates occur with higher rates and larger inputs. These relationships produce a Law of Diminishing Returns that penalizes costly excess information coding capacity, promoting the reduction of cell size, channel density, and input stimuli to the minimum possible, suggesting that the trade-off between energy and information has influenced all aspects of neuronal anatomy and physiology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper addresses the problem of finding outage-optimal power control policies for wireless energy harvesting sensor (EHS) nodes with automatic repeat request (ARQ)-based packet transmissions. The power control policy of the EHS specifies the transmission power for each packet transmission attempt, based on all the information available at the EHS. In particular, the acknowledgement (ACK) or negative acknowledgement (NACK) messages received provide the EHS with partial information about the channel state. We solve the problem of finding an optimal power control policy by casting it as a partially observable Markov decision process (POMDP). We study the structure of the optimal power policy in two ways. First, for the special case of binary power levels at the EHS, we show that the optimal policy for the underlying Markov decision process (MDP) when the channel state is observable is a threshold policy in the battery state. Second, we benchmark the performance of the EHS by rigorously analyzing the outage probability of a general fixed-power transmission scheme, where the EHS uses a predetermined power level at each slot within the frame. Monte Carlo simulation results illustrate the performance of the POMDP approach and verify the accuracy of the analysis. They also show that the POMDP solutions can significantly outperform conventional ad hoc approaches.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The study of the fracture behaviour of concrete structures using the fictitious crack model requires two fracture properties of the concrete mix, namely, the size-independent specific fracture energy G(F). and the corresponding tension softening relation sigma(w) between the residual stress carrying capacity sigma and the crack opening w in the fracture process zone ahead of a real crack. In this paper, bi-linear tension softening diagrams of three different concrete mixes, ranging in compressive strength from 57 to 122 MPa whose size-independent specific fracture energy has been previously determined, have been constructed in an inverse manner based on the concept of a non-linear hinge from the load-crack mouth opening plots of notched three-point bend beams. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrical switching studies on amorphous Si15Te74Ge11 thin film devices show interesting changes in the switching behavior with changes in the input energy supplied; the input energy determines the extent of crystallization in the active volume, which is reflected in the value of SET resistances. This in turn, determines the trend exhibited by switching voltage (V-t) for different input conditions. The results obtained are analyzed on the basis of the amount of Joule heat generated, which determines the temperature of the active volume. Depending on the final temperature, devices are rendered either in the intermediate state with a resistance of 5*10(2) Omega or the ON state with a resistance of 5*10(1) Omega. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The twin demands of energy-efficiency and higher performance on DRAM are highly emphasized in multicore architectures. A variety of schemes have been proposed to address either the latency or the energy consumption of DRAMs. These schemes typically require non-trivial hardware changes and end up improving latency at the cost of energy or vice-versa. One specific DRAM performance problem in multicores is that interleaved accesses from different cores can potentially degrade row-buffer locality. In this paper, based on the temporal and spatial locality characteristics of memory accesses, we propose a reorganization of the existing single large row-buffer in a DRAM bank into multiple sub-row buffers (MSRB). This re-organization not only improves row hit rates, and hence the average memory latency, but also brings down the energy consumed by the DRAM. The first major contribution of this work is proposing such a reorganization without requiring any significant changes to the existing widely accepted DRAM specifications. Our proposed reorganization improves weighted speedup by 35.8%, 14.5% and 21.6% in quad, eight and sixteen core workloads along with a 42%, 28% and 31% reduction in DRAM energy. The proposed MSRB organization enables opportunities for the management of multiple row-buffers at the memory controller level. As the memory controller is aware of the behaviour of individual cores it allows us to implement coordinated buffer allocation schemes for different cores that take into account program behaviour. We demonstrate two such schemes, namely Fairness Oriented Allocation and Performance Oriented Allocation, which show the flexibility that memory controllers can now exploit in our MSRB organization to improve overall performance and/or fairness. Further, the MSRB organization enables additional opportunities for DRAM intra-bank parallelism and selective early precharging of the LRU row-buffer to further improve memory access latencies. These two optimizations together provide an additional 5.9% performance improvement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The generation of renewable energy through photocatalysis is an attractive option to utilize the abundantly available solar radiation for a sustainable future. Photocatalysis refers to charge-carrier, i.e. electron and hole, mediated reactions occurring on a semiconductor surface in presence of ultraviolet or visible light radiation. Photocatalysis is a well established advanced oxidation technique for the decontamination of toxic organic pollutants to CO2 and H2O. However, the generation of energy in the form of hydrogen, hydrocarbon fuels and electricity via photocatalysis is an upcoming field with great many technical challenges towards practical implementation. This review will describe the fundamental reaction mechanism of (i) photocatalytic water splitting, (ii) photocatalytic H-2 generation in presence of different sacrificial agents, (iii) H-2 and electricity generation in a photofuel cell, (iv) photocatalytic reduction of CO2 to hydrocarbons and useful chemicals, and (v) photocatalytic water-gas shift reaction. A historic and recent perspective of the above conversion techniques, especially with regard to the development of TiO2-based and non-TiO2 materials is provided. The activity of different materials for the above reactions based on quantifiers like reaction rate, quantum yield and incident-photon-to-current efficiency is compared, and key design considerations of the ``best'' photocatalyst or photoelectrode is outlined. An overall assessment of the research area indicates that the presently achieved quantum efficiencies for the above reactions are rather moderate in the visible region, and the goal is to develop a catalyst that absorbs visible radiation, provides good charge-carrier separation, and exhibits high stability for long periods of usage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Double helical structures of DNA and RNA are mostly determined by base pair stacking interactions, which give them the base sequence-directed features, such as small roll values for the purine-pyrimidine steps. Earlier attempts to characterize stacking interactions were mostly restricted to calculations on fiber diffraction geometries or optimized structure using ab initio calculations lacking variation in geometry to comment on rather unusual large roll values observed in AU/AU base pair step in crystal structures of RNA double helices. We have generated stacking energy hyperspace by modeling geometries with variations along the important degrees of freedom, roll, and slide, which were chosen via statistical analysis as maximally sequence dependent. Corresponding energy contours were constructed by several quantum chemical methods including dispersion corrections. This analysis established the most suitable methods for stacked base pair systems despite the limitation imparted by number of atom in a base pair step to employ very high level of theory. All the methods predict negative roll value and near-zero slide to be most favorable for the purine-pyrimidine steps, in agreement with Calladine's steric clash based rule. Successive base pairs in RNA are always linked by sugar-phosphate backbone with C3-endo sugars and this demands C1-C1 distance of about 5.4 angstrom along the chains. Consideration of an energy penalty term for deviation of C1-C1 distance from the mean value, to the recent DFT-D functionals, specifically B97X-D appears to predict reliable energy contour for AU/AU step. Such distance-based penalty improves energy contours for the other purine-pyrimidine sequences also. (c) 2013 Wiley Periodicals, Inc. Biopolymers 101: 107-120, 2014.