955 resultados para embryo suspensor
Resumo:
Case Description-3 sets of monozygotic twins resulting from transfers of single embryos to recipient mares were examined. Clinical Findings-In all 3 recipient mares with twin pregnancies, only 1 embryonic vesicle was detected before day 25 of gestation. In 1 recipient mare, 2 apparent adjacent vesicles, each containing an embryo with a heartbeat, were visualized on ultrasonographic examination on day 37 of gestation. The other 2 recipient mares underwent ultrasonographic examination on day 30 of gestation, at which time only 1 vesicle and embryo was identified. In these latter 2 recipient mares, however, a thorough ultrasonographic examination for a second conceptus on day 30 had not been performed, as only 1 embryo had been transferred and visualized on early ultrasonographic examination. Treatment and Outcome-All twin pregnancies resulted in death of both fetuses. Genetic analysis confirmed that each set of monozygotic twins originated from the transferred embryo. Clinical Relevance-Monozygotic twin pregnancy may occur after embryo transfer; thus recipient mares should be examined thoroughly for multiple conceptuses, especially between 25 and 30 days of gestation. At this time, the allantoides of monozygotic twins should be visible ultrasonographically and effective management may still be possible.
Resumo:
Objective: This prospective randomized trial evaluated if there is an improvement in clinical outcomes when assisted hatching is performed in embryos derived from vitrified oocytes in an ovum donation program. Methods: Sixty oocyte recipients undergoing donation program using egg-cryobanking were randomly allocated to the assisted hatched (AH, n=30) or control group (n=30). Pregnancy and implantation rates were compared between the groups. Vitrification and warming procedure were carried out according to the Cryotopmethod. Immediately before embryo transfer, embryos undergoing laser-assisted hatching had the zona pellucida thinned using a 1.48 μm wavelength diode laser. Results: A total of 288 vitrified MII oocytes were warmed for the 60 recipients (4.8 oocytes per recipient). Out of 288 vitrified oocytes, 273 (94.8%) survived. All surviving oocytes were sperm injected and 228 displayed 2 pronucleus 16-18h after injection (83.5%). There were 172 good quality embryos transferred. Twenty four patients achieved clinical pregnancy (total pregnancy rate of 40%). The clinical pregnancy rate did not differ between AH and control groups (44.4% and 33.3%, respectively, p=0.1967), however AH resulted in a significant higher implantation rate (31.6% and 18.4%, p=0.0206). These findings were confirmed by the regression models either for pregnancy (OR = 1.14; IC 95% = 0.80-.72; p= 0.766), as for the implantation rate (RC:19.45, P=0.041). Conclusions: Our evidences demonstrated the effectiveness of the AH in embryos derived from warmed oocytes and suggest that oocyte cryopreservation is a valuable tool to provide successful outcomes in an egg donor program. © Todos os direitos reservados a SBRA - Sociedade Brasileira de Reprodução Assistida.
Resumo:
Objective: This case-control study analyzed mass spectrometry fingerprinting patterns of culture media samples used for embryo culture to predict embryo implantation. Methods: The culture medium harvested after embryo transfer of 22 embryos from 13 patients was used for the experiments. After embryo transfer, the remaining culture media were collected and samples were split in positive (n=8) and negative (n=14) implantation groups according to implantation outcomes (100% or 0% of implantation). Samples were individually diluted and injected directly to the Electrospray ionization (ESI) MS coupled to a Quadrupole Time-of-flight MS (Q-ToF-MS).Ions relative intensities of each spectrum were considered. Data analysis was conducted in MatLab 7.0 version using Partial Least Squares - Discriminant Analysis toolbox. Results: There were 3027 observed ions at 100% and 0% implantation groups by ESI-Q-ToF-MS. The statistical model could categorize the samples in two clusters, based on their positive and negative implantation outcomes. Less intense ions present in the mass spectra with statistical significance have contributed to the major differences to group distinction. Conclusions: Positive and negative implantation embryos showed a specific biochemical pattern present in culture media, which could be detected as a fast, simple and non-invasive way. This biochemical profile could help the selection of the most viable embryo, improving single embryo transfer and thus eliminating the risk and undesirable outcomes of multiple pregnancies. © Todos os direitos reservados a SBRA - Sociedade Brasileira de Reprodução Assistida.
Resumo:
To better understand the differences related to HS resistance between Bos indicus and Bos taurus, we aim to verify if the HS tolerance is due mostly to the genetic contribution from the oocyte, spermatozoa or both. Oocytes from Nelore and crossbreed Holstein cows (cHST) were collected, matured and fertilized with semen from Nelore (N), Angus (An), Brahman (Bra) and Gir (Gir) bulls. Nine six hours post insemination (hpi), ≥ 16 cells embryos were separated in two groups: control and HS. In control group, embryos were cultured at 39°C, whereas in the HS group, embryos were subjected to 41°C for 12 h, and then returned to 39°C. There was no effect of HS on blastocyst and hatched blastocyst rates in all breeds analyzed. The percentage of oocytes that cleaved and reached morula stage was significantly lower (p < 0.05) in cHST x Gir as compared to the other breeds. Additionally, blastocyst rates was higher in cHST x N than in cHST x An and cHST x Gir (p < 0.05). It was concluded that the oocyte is more important than the spermatozoa for the development of thermotolerance, since the breed of the bull did not influence embryo development after HS.
Resumo:
Background: Throughout dairy cows evolution, milk production was always the key point to select the superior animal. Currently, several evidences has shown that high milk production have intensively contributed to the decline of dairy cattle fertility. Beyond milk production, dairy cows have their reproductive performance impaired by another factors, heat stress and repeat-breeding. Methods like fixed time artificial insemination and embryo transfer were developed to minimize the effects of these factors, and improve dairy herds profitability. This review aims to show some key-point experiments conducted to improve the efficiency of the self-appointed protocols for artificial insemination and embryo transfer in Brazil, overcoming several reproductive problems. Our goal is to develop cheap and easy self-appointed programs that facilitate animal handling and maximize their reproductive outcomes all over the year. Review: Failure in estrus detection is the mainly limiting factor for the use of artificial insemination in high-production dairy herd. An excellent alternative to overcome the need of estrus detection is fixed time artificial insemination. Many protocols with and without the use of estradiol have been developed to that end. Among the protocols for fixed time artificial insemination without estradiol, DoubleOvsynch has been extensively used recently in American dairy herds. In Brazil, similar pregnancy rate was obtained compared to progesterone-estradiol based protocols for fixed time artificial insemination. Particularities of progesterone-estradiol based protocols as (1) new progesterone device or devices previously used for eight days; (2) different doses of eCG; and (3) the use of estradiol cypionate for fixed time artificial insemination have been studied in Brazil. The use of self-appointed artificial insemination also enabled the reduction of the interval calving-conception compared to cows inseminated following the standing estrus. Regarding the low fertility of repeat breeders and the effect of heat stress at early pregnancy, other methods like embryo transfer became important tools to enhance reproductive efficiency of Brazilian dairy herds. Protocols were also developed to allow fixed time embryo transfer, eliminating the need of estrus detection and improving the reproductive efficiency of lactating recipients. As well as described for fixed time artificial insemination treatments, there is a large variety of hormone combination for fixed time embryo transfer (with and without estradiol). An experiment conducted in Brazil demonstrated that protocols for fixed time embryo transfer without estradiol can be as good as with estradiol to synchronize high-producing Holstein recipients, essentially during summer. Particularities related to embryos cryopreservation, synchronization of the estrus cycle of donors and recipients and the site of embryo release into the uterine horn were also investigated. Greater conception rates were achieved when fresh embryos were transferred compared to frozen-thawed ones. Also, the tight synchronization between donor and recipient (same day of estrus) resulted more pregnancies than when recipients were one day later or in advantage in relation to donors. Moreover, the site of embryo release into the uterine horn (ipsilateral to the corpus luteum) had no effect on pregnancy rates after in vivo produced embryo transfer. Conclusion: Both fixed time artificial insemination and fixed time embryo transfer are important tools to improve reproductive efficiency of high-producing dairy cows. These biotechnologies help bypassing some of the greatest challenges of dairy cattle reproduction: the difficulties of estrus detection, and the low fertility associated to heat stress and repeat breeding.
Resumo:
Despite the fact that the processes of embryo development and implantation of mammals do not occur in atmospheric tension in vivo, it is common practice in laboratories for in vitro fertilization (IVF) the culture of embryos in an oxygen tension of 20%. The discrepancy between the tensions of oxygen leads to important discussions about their effects in vitro embryo development. It is believed that the culture of embryo in atmospheric oxygen tension can be detrimental to the quality of the data for predisposing them to the negative interference of reactive oxygen species (ROS), resulting in oxidative stress, leading to deleterious effects on metabolism embryo gene expression and blastocysts grown in those conditions. Faced with arguments for and against the culture of embryos in vitro oxygen tensions similar to those found in vivo, this revies article aims to condense and discuss the literature concerning the influence of oxygen tension on the quality of in vitro culture.
Resumo:
In assisted reproduction, the selection of gametes to achieve better clinical outcomes is a crucial task of embryologists. The quality of the oocyte is a key factor in female fertility, reflecting the intrinsic potential of gamete development, and has a vital role not only in conception but also in subsequent embryonic development. Oocyte dysmorphisms are classified into two types: cytoplasmic, including the presence of granules and/or cytoplasmic inclusions (vacuoles, refractive bodies, and aggregates of the endoplasmic reticulum), and extracytoplasmic (changes in the shape of the oocyte, the zona pellucida, the space perivitelline changes and the polar body). Variations in oocyte morphology may occur due to factors such as the age of women, genetic problems and changes in the hormonal environment to which the oocyte is exposed in ovarian hyperstimulation. The classification of oocyte morphology and its correlation with embryo development and pregnancy rates are controversial in the literature. Several studies show no association between oocyte dysmorphisms and the results of in vitro fertilization, while others report an association between oocyte morphology and embryo development. These differences in the results can be explained by the use of different morphological criteria due to a lack of standardization of oocyte evaluation. © Todos os direitos reservados a SBRA - Sociedade Brasileira de Reprodução Assistida.
Resumo:
Complex biological systems require sophisticated approach for analysis, once there are variables with distinct measure levels to be analyzed at the same time in them. The mouse assisted reproduction, e.g. superovulation and viable embryos production, demand a multidisciplinary control of the environment, endocrinologic and physiologic status of the animals, of the stressing factors and the conditions which are favorable to their copulation and subsequently oocyte fertilization. In the past, analyses with a simplified approach of these variables were not well succeeded to predict the situations that viable embryos were obtained in mice. Thereby, we suggest a more complex approach with association of the Cluster Analysis and the Artificial Neural Network to predict embryo production in superovulated mice. A robust prediction could avoid the useless death of animals and would allow an ethic management of them in experiments requiring mouse embryo.
Resumo:
Development within the cleidoic egg of birds and reptiles presents the embryo with the problem of accumulation of wastes from nitrogen metabolism. Ammonia derived from protein catabolism is converted into the less toxic product urea or relatively insoluble uric acid. The pattern of nitrogen excretion of the green iguana, Iguana iguana, was determined during embryonic development using samples from allantoic fluid and from the whole homogenized egg, and in hatchlings and adults using samples of blood plasma. Urea was the major excretory product over the course of embryonic development. It was found in higher concentrations in the allantoic sac, suggesting that there is a mechanism present on the allantoic membrane enabling the concentration of urea. The newly hatched iguana still produced urea while adults produced uric acid. The time course of this shift in the type of nitrogen waste was not determined but the change is likely to be related to the water relations associated with the terrestrial habit of the adult. The green iguana produces parchment-shelled eggs that double in mass during incubation due to water absorption; the eggs also accumulate 0.02. mM of urea, representing 82% of the total measured nitrogenous residues that accumulate inside the allantois. The increase in egg mass and urea concentration became significant after 55. days of incubation then were unchanged until hatching. © 2012 Elsevier Inc.
Resumo:
The amount and timing of nitrogen application can favor seed quality, such as increasing protein content, which is an important constituent for embryo development. The objective of this study was to evaluate the physiological quality of sweet corn seeds collected from plants cultivated with different dosages and timings of nitrogen top-dressing applications. Seeds of the BR 400 variety (Super Sweet) were used obtained from plants submitted to dosages of 0, 40, 80 and 120kg ha -1 of N in two top-dressing applications (vegetative and reproductive stages). The weight of 100 grains, germination, first count of germination test, dry weight of normal seedlings from the germination test, seedling growth, cold test, accelerated aging, tetrazolium vigor and electric conductivity and emergency speed rate were determined. Data was submitted to an analysis of variance using the F-test at the 5% level and second degree regression analysis. The dosage and time of application of nitrogen top-dressing did not affect seed weight or the germination of sweet corn seeds. An increase of the N top-dressing dosage, applied in the vegetative stage reduced the length of the aerial part, the root and the whole seedling.
Resumo:
The palm Archontophoenix cunninghamii H.Wendl. & Drude, even widely used in landscaping, has been poorly studied. In general, there are few articles on morphology of seeds and seedlings of Arecaceae species. With the aim of filling this gap, the objective of the present work describes the diaspore (seed with adhering endocarp) and the seedling morphology. A. cunninghamii seeds present rounded shape and a ruminated endosperm of hard consistency. The embryo is lateral, peripheral and relatively undifferentiated, approximately 4 mm long, conical, with one of the extremities convex, and in its inside there is a small protuberance while the other extremity is rounded and narrower. The seedling is adjacent ligulated and hypogeal, with the development starting from a mass of undifferentiated cells in the micropillar depression, the differentiation of shoot and root primordium, being the first enveloped by a sheath closed. The root system is fasciculate, with different adventitious roots and several lateral roots with few absorbent hairs. The stem comprises three sheaths surrounding the first young leaf, which are opened in succession, permitting the emergence of the primary bifid leaf, with typical parallel nerves.
Resumo:
Many neuropsychiatric conditions have a common set of neurological substrates associated with the integration of sensorimotor processing. The teneurins are a recently described family of proteins that play a significant role in visual and auditory development. Encoded on the terminal exon of the teneurin genes is a family of bioactive peptides, termed teneurin C-terminal associated peptides (TCAP), which regulate mood-disorder associated behaviors. Thus, the teneurin-TCAP system could represent a novel neurological system underlying the origins of a number of complex neuropsychiatric conditions. However, it is not known if TCAP-1 exerts its effects as part of a direct teneurin function, whereby TCAP represents a functional region of the larger teneurin protein, or if it has an independent role, either as a splice variant or post-translational proteolytic cleavage product of teneurin. In this study, we show that TCAP-1 can be transcribed as a smaller mRNA transcript. After translation, further processing yields a smaller 15. kDa protein containing the TCAP-1 region. In the mouse hippocampus, immunoreactive (ir) TCAP-1 is exclusively localized to the pyramidal layers of the CA1, CA2 and CA3 regions. Although the localization of TCAP and teneurin in hippocampal regions is similar, they are distinct within the cell as most ir-teneurin is found at the plasma membrane, whereas ir-TCAP-1 is predominantly found in the cytosol. Moreover, in mouse embryonic hippocampal cell culture, FITC-labeled TCAP-1 binds to the plasma membrane and is taken up into the cytosol via dynamin-dependent caveolae-mediated endocytosis. Our data provides novel evidence that TCAP-1 is structurally and functionally distinct from the larger teneurins. © 2012.
Resumo:
It is believed the temporary meiosis arrest with roscovitine or cycloheximide may improve the in vitro developmental competence of oocytes in different animal species. However, little is known about the effects of these inhibitors on ultrastructure of ovines cumulus-oocyte complexes (COCs). The aim of this study was to evaluate the progression of cytoplasmic maturation and the ultrastructural changes in sheep COCs exposed to roscovitine or cycloheximide, at acceptable concentrations. COCs were in vitro cultured for 24. h in maturation medium (control group) containing 100 μM roscovitine or 1 μg/mL cycloheximide (treatment groups). After this time, some COCs were cultured for further 22. h in inhibitor-free medium. The ultrastructure organization of COCs was evaluated by transmission electron microscopy before (immature group) and after in vitro culture for 24 and 46. h. As expected, signs of immaturity and maturity were observed in immature and control groups, respectively. In treatment with roscovitine, there were cumulus cells degeneration, swelling of mitochondrias, few cortical granules and many vesicles with electron-dense material. However, in cycloheximide treatment there were not signs of degeneration or cellular senescence. Metabolic units and mitochondrial pleomorphism were found in all experimental groups. These evidences demonstrate that roscovitine promoted irreversible ultrastructural changes while cycloheximide did not affect the cytoplasmic maturation. However, the implications on embryo development are still unclear. © 2012 Elsevier B.V.
Resumo:
The reproductive biology of the guitarfish Rhinobatos percellens was studied from 751 specimens caught by bottom pair trawlers off the coast of São Paulo, Brazil, between c. 24° 00′ S; 45° 15′ W and c. 25° 10′ S; 47° 52′ W, from September 2007 to August 2009. The total length (LT) and total mass (MT) relationship for males and females combined was MT = 1·29E-06 LT 3·15 (r = 0·99, n = 751). The mean LT of sexually mature specimens was 548 mm for males and 583 mm for females. Clasper growth was allometric and showed three distinct phases. Most claspers were calcified in specimens of c. 550 mm LT. The mean diameter of the largest oocyte was 29·8 mm, the mean ovarian fecundity was seven oocytes and ovulation occurred between August and November. Uterine fecundity ranged from two to 13 embryos (mean of five embryos). Larger females had higher litter sizes and larger embryos; the size-at-birth was c. 200 mm LT. The hepato-somatic index oscillated seasonally for males and females; the gonado-somatic index had little variation in males, but varied seasonally in females. The presence of many non-pregnant adult females and of encapsulated eggs during two consecutive seasons suggests a resting period between gestations and the possibility of diapause. © 2012 The Authors. Journal of Fish Biology © 2012 The Fisheries Society of the British Isles.
Resumo:
During initial development, both X chromosomes are active in females, and one of them must be silenced at the appropriate time in order to dosage compensate their gene expression levels to male counterparts. Silencing involves epigenetic mechanisms, including histone deacetylation. Major X chromosome inactivation (XCI) in bovine occurs between hatching and implantation, although in vitro culture conditions might disrupt the silencing process, increasing or decreasing X-linked gene expression. In this study, we aimed to address the roles of histone deacetylase inhibition by trichostatin A (TSA) on female preimplantation development.We tested the hypothesis that by enhancing histone acetylation, TSA would increase the percentage of embryos achieving 16-cell stage, reducing percentage of embryos blocked at 8-cell stage, and interfere with XCI in IVF embryos. We noticed that after TSA treatment, acetylation levels in individual blastomeres of 8-16 cell embryos were increased twofold on treated embryos, and the samewas detected for blastocysts. Changes among blastomere levels within the same embryo were diminished on TSA group, as low-acetylated blastomeres were no longer detected. The percentage of embryos that reached the 5th cleavage cycle 118 h after IVF, analyzed by Hoechst staining, remained unaltered after TSA treatment. Then, we assessed XIST and G6PD expression in individual female bovine blastocysts by quantitative real-time PCR. Even though G6PD expression remained unaltered after TSA exposure, XIST expression was eightfold decreased, and we also detected a major decrease in the percentage of blastocysts expressing detectable XIST levels after TSA treatment. Based on these results, we conclude that HDAC is involved on XCI process in bovine embryos, and its inhibition might delay X chromosome silencing and attenuate aberrant XIST expression described for IVF embryos. © 2013 Society for Reproduction and Fertility.