972 resultados para double antibody sandwich ELISA
Resumo:
We present an alternative method of producing density stratifications in the laboratory based on the 'double-tank' method proposed by Oster (Sci Am 213:70-76, 1965). We refer to Oster's method as the 'forced-drain' approach, as the volume flow rates between connecting tanks are controlled by mechanical pumps. We first determine the range of density profiles that may be established with the forced-drain approach other than the linear stratification predicted by Oster. The dimensionless density stratification is expressed analytically as a function of three ratios: the volume flow rate ratio n, the ratio of the initial liquid volumes λ and the ratio of the initial densities ψ. We then propose a method which does not require pumps to control the volume flow rates but instead allows the connecting tanks to drain freely under gravity. This is referred to as the 'free-drain' approach. We derive an expression for the density stratification produced and compare our predictions with saline stratifications established in the laboratory using the 'free-drain' extension of Oster's method. To assist in the practical application of our results we plot the region of parameter space that yield concave/convex or linear density profiles for both forced-drain and free-drain approaches. The free-drain approach allows the experimentalist to produce a broad range of density profiles by varying the initial liquid depths, cross-sectional and drain opening areas of the tanks. One advantage over the original Oster approach is that density profiles with an inflexion point can now be established. © 2008 Springer-Verlag.
Resumo:
The combination of light carbon fiber reinforced polymer (CFRP) composite materials with structurally efficient sandwich panel designs offers novel opportunities for ultralight structures. Here, pyramidal truss sandwich cores with relative densities ρ̄ in the range 1-10% have been manufactured from carbon fiber reinforced polymer laminates by employing a snap-fitting method. The measured quasi-static shear strength varied between 0.8 and 7.5 MPa. Two failure modes were observed: (i) Euler buckling of the struts and (ii) delamination failure of the laminates. Micro-buckling failure of the struts was not observed in the experiments reported here while Euler buckling and delamination failures occurred for the low (ρ̄≤1%) and high (ρ̄>1%) relative density cores, respectively. Analytical models for the collapse of the composite cores by these failure modes are presented. Good agreement between the measurements and predictions based on the Euler buckling and delamination failure of the struts is observed while the micro-buckling analysis over-predicts the measurements. The CFRP pyramidal cores investigated here have a similar mechanical performance to CFRP honeycombs. Thus, for a range of multi-functional applications that require an "open-celled" architecture (e.g. so that cooling fluid can pass through a sandwich core), the CFRP pyramidal cores offer an attractive alternative to honeycombs. © 2012 Elsevier Ltd. All rights reserved.
Resumo:
探索建立鱼类寄生圆形碘孢虫(MyxobolusrotundusNemezek,1911,Myxosporea,Bivalvulida)完整孢子酶联免疫吸附试验(Enzyme linkedimmunosorbentassay,ELISA)检测的可行性,对丙酮、戊二醛、甲醛、多聚甲醛、乙醇等几种常用固定剂应用于此方法的效果进行评价,初步建立了针对鱼类黏孢子虫的完整孢子ELISA检测模式。结果显示,同比其他几种固定剂,2%的多聚甲醛、0 25%的戊二醛对圆形碘孢虫完整孢子ELISA有较好的效果,经二者固定后,最
Resumo:
AIMS: To assess the occurrence of diagnostic delay in primary antibody deficiency in the period 1989-2002, since a similar study in 1989, and to assess the impact of UK national guidelines communicated in 1995. METHODS: A retrospective case note review was performed of 89 consecutive patients with antibody deficiency referred to a regional referral centre for clinical immunology in north west England and north Wales. The delay in diagnosis and the estimated resulting morbidity in terms of infections were assessed. RESULTS: Fifty six of the 89 patients experienced delay in diagnosis. The overall median delay was 2 years (mean, 4.4), resulting in substantial morbidity (equivalent to two major infections and one minor infection). This shows a moderate improvement since the previous study in 1989 and since the introduction of UK national guidelines in 1995. Respiratory infections are the most frequent presenting infections, and respiratory physicians the most common source of referral. CONCLUSIONS: There is still considerable delay in the diagnosis of primary antibody deficiency, but the data suggest an improvement in practice since the previous study in 1989 and the distribution of national guidelines in 1995.
Resumo:
Sandwich panels with crushable foam cores have attracted significant interest for impulsive load mitigation. We describe a method for making a lightweight, energy absorbing, glass fiber composite sandwich structure and explore it is through thickness (out-of-plane) compressive response. The sandwich structure utilized corrugated composite cores constructed from delamination resistant 3D woven E-glass fiber textiles folded over triangular cross section prismatic closed cell, PVC foam inserts. The corrugated structure was stitched to 3D woven S2-glass fiber face sheets and infiltrated with a rubber toughened, impact resistant epoxy. The quasi-static compressive stress-strain response of the panels was experimentally investigated as a function of the strut width to length ratio and compared to micromechanical predictions. Slender struts failed by elastic (Euler) buckling which transitioned to plastic microbuckling as the strut aspect ratio increased. Good agreement was observed between experimental results and micromechanical predictions over the wide range of core densities investigated in the study.
Resumo:
We fabricate double-wall carbon nanotube polymer composite saturable absorbers and demonstrate stable Q-switched and Mode-locked Thulium fiber lasers in a linear cavity and a ring cavity respectively. © 2011 Optical Society of America.
Resumo:
An indirect inhibitive surface plasmon resonance (SPR) immunoassay was developed for the microcystins (MCs) detection. The bioconjugate of MC-LR and bovine serum albumin (BSA) was immobilized on a CM5 sensor chip. A serial premixture of MC-LR standards (or samples) and monoclonal antibody (mAb) were injected over the functional sensor surface, and the subsequent specific immunoreaction was monitored on the BIAcore 3000 biosensor and generated a signal with an increasing intensity in response to the decreasing MCs concentration. The developed SPR immunoassay has a wide quantitative range in 1-100 mu g L-1. Although not as sensitive as conventional enzyme-linked immunosorbent assay (ELISA), the SPR biosensor offered unique advantages: (I) the sensor chip could be reusable without any significant loss in its binding activity after 50 assay-regeneration cycles, (2) one single assay could be accomplished in 50 min (including 30-min preincubation and 20-min BIAcore analysis), and (3) this method did not require multiple steps. The SPR biosensor was also used to detect MCs in environmental samples, and the results compared well with those obtained by ELISA. We conclude that the SPR biosensor offers outstanding advantages for the MCs detection and may be further developed as a field-portable sensor for real-time monitoring of MCs on site in the near future. (C) 2009 Published by Elsevier B.V.
Resumo:
A novel corrugated composite core, referred to as a hierarchical corrugation, has been developed and tested experimentally. Hierarchical corrugations exhibit a range of different failure modes depending on the geometrical properties and the material properties of the structures. In order to understand the different failure modes the analytical strength model, developed in part 1 of this paper, was used to make collapse mechanism maps for the different corrugation configurations. If designed correctly, the hierarchical structures can have more than 7 times higher weight specific strength compared to its monolithic counter part. The difference in strength arises mainly from the increase in buckling resistance of the sandwich core members compared to the monolithic version. The highest difference in strength is seen for core configurations with low overall density. As the density of the core increases, the monolithic core members get stockier and more resistant to buckling and thus the benefits of the hierarchical structure reduces. © 2008 Elsevier Ltd. All rights reserved.
Resumo:
An analytical model for the compressive and shear response of monolithic and hierarchical corrugated composite cores has been developed. The stiffness model considers the contribution in stiffness from the bending- and the shear deformations of the core members in addition to the stretching deformation. The strength model is based on the normal stress and shear stress distribution over each core member when subjected to a shear or compressive load condition. The strength model also accounts for initial imperfections. In part 1 of this series, the analytical model is described and the results are compared to finite element predictions. In part 2, the analytical model is compared to experimental results and the behaviour of the corrugated structures is investigated more thoroughly using failure mechanism maps. © 2008 Elsevier Ltd. All rights reserved.
Resumo:
Carbon fiber reinforced polymer (CFRP) composite sandwich panels with hybrid foam filled CFRP pyramidal lattice cores have been assembled from a carbon fiber braided net, 3D woven face sheets and various polymeric foams, and infused with an epoxy resin using a vacuum assisted resin transfer process. Sandwich panels with a fixed CFRP truss mass have been fabricated using a variety of closed cell polymer and syntactic foams, resulting in core densities ranging from 44-482kgm-3. The through thickness and in-plane shear modulus and strength of the cores increased with increasing foam density. The use of low compressive strength foams within the core was found to result in a significant reduction in the compressive strength contributed by the CFRP trusses. X-ray tomography led to the discovery that the trusses develop an elliptical cross-section shape during pressure assisted resin transfer. The ellipticity of the truss cross-sections increased, and the lattice contribution to the core strength decreased as the foam density was reduced. Micromechanical modeling was used to investigate the relationships between the mechanical properties and volume fractions of the core materials and truss topology of the hybrid core. The specific strength and moduli of the hybrid cores lay between those of the CFRP lattices and foams used to fabricate them. However, their volumetric and gravimetric energy absorptions significantly exceeded those of the materials from which they were fabricated. They compare favorably with other lightweight energy absorbing materials and structures. © 2013.
Resumo:
The double-stranded RNA (dsRNA)-dependent protein kinase PKR is thought to mediate a conserved antiviral pathway by inhibiting viral protein synthesis via the phosphorylation of the alpha subunit of eukaryotic initiation factor 2 (eIF2 alpha). However, little is known about the data related to the lower vertebrates, including fish. Recently, the identification of PKR-like, or PKZ, has addressed the question of whether there is an orthologous PKR in fish. Here, we identify the first fish PKR gene from the Japanese flounder Paralichthys olivaceus (PoPKR). PoPKR encodes a protein that shows a conserved structure that is characteristic of mammalian PKRs, having both the N-terminal region for dsRNA binding and the C-terminal region for the inhibition of protein translation. The catalytic activity of PoPKR is further evidence that it is required for protein translation inhibition in vitro. PoPKR is constitutively transcribed at low levels and is highly induced after virus infection. Strikingly, PoPKR overexpression increases eIF2 alpha phosphorylation and inhibits the replication of Scophthalmus maximus rhabdovirus (SMRV) in flounder embryonic cells, whereas phosphorylation and antiviral effects are impaired in transfected cells expressing the catalytically inactive PKR-K421R variant, indicating that PoPKR inhibits virus replication by phosphorylating substrate eIF2 alpha. The interaction between PoPKR and eIF2 alpha is demonstrated by coimmunoprecipitation assays, and the transfection of PoPKR-specific short interfering RNA further reveals that the enhanced eIF2 alpha phosphorylation is catalyzed by PoPKR during SMRV infection. The current data provide significant evidence for the existence of a PKR-mediated antiviral pathway in fish and reveal considerable conservation in the functional domains and the antiviral effect of PKR proteins between fish and mammals.
Resumo:
Methyl parathion hydrolase (MPH) is an enzyme that catalyzes the degradation of methyl parathion, generating a yellow product with specific absorption at 405 nm. The application of MPH as a new labeling enzyme was illustrated in this study. The key advantages of using MPH as a labeling enzyme are as follows: (1) unlike alkaline phosphatase (AP), horseradish peroxidase (HRP), and glucose oxidase (GOD), MPH is rarely found in animal cells, and it therefore produces less background noise; (2) its active form in solution is the monomer, with a molecular weight of 37 kDa; (3) its turnover number is 114.70 +/- 13.19 s(-1), which is sufficiently high to yield a significant signal for sensitive detection; and (4) its 3D structure is known and its C-terminal that is exposed to the surface can be easily subjected to the construction of genetic engineering monocloning antibody-enzyme fusion for enzyme-linked immunosorbent assay (ELISA). To demonstrate its utility, MPH was ligated to an single-chain variable fragment (scFv), known as A1E, against a white spot syndrome virus (WSSV) with the insertion of a [-(Gly-Ser)(5)-] linker peptide. The resulting fusion protein MPH-A1E possessed both the binding specificity of the scFv segment and the catalytic activity of the MPH segment. When MPH-A1E was used as an ELISA reagent, 25 ng purified WSSV was detected; this was similar to the detection sensitivity obtained using A1E scFv and the HRP/Anti-E Tag Conjugate protocol. The fusion protein also recognized the WSSV in 1 mu L hemolymph from an infected shrimp and differentiated it from a healthy shrimp.