972 resultados para dopamine receptor antagonists
Resumo:
A secretory surge of prolactin occurs on the afternoon of oestrus in cycling rats. Pituitary prolactin is inhibited by dopamine. We evaluated the activity of the neuroendocrine dopaminergic neurones during oestrus and dioestrus, as determined by dopaminergic activity in the median eminence and neurointermediate lobe of the pituitary, as well as Fos-related antigen expression in tyrosine hydroxylase (TH)-immunoreactive (ir) neurones of the arcuate nucleus (ARC) and periventricular nucleus (Pe). During oestrus, the 4-dihydroxyphenylacetic acid/dopamine ratio in the median eminence decreased at 16.00 h, coinciding with the increase in plasma prolactin levels. Similarly, the expression of Fos-related antigen in TH-ir neurones of Pe and rostral-, dorsomedial- and caudal-ARC also decreased at 16.00 h. On dioestrus, 4-dihydroxyphenylacetic acid/dopamine ratio in the median eminence and Fos-related antigen expression in TH-ir neurones of Pe and rostral-ARC decreased at 18.00 h, whereas prolactin levels were unaltered. No variation in dopaminergic activity was found in the neurointermediate lobe of the pituitary on either oestrus or dioestrus. The number of TH-ir neurones in the ARC and parameters of dopaminergic activity were found to be generally lower on oestrus compared to dioestrus. The transitory decrease in the activity of neuroendocrine dopaminergic neurones temporally associated with the prolactin surge on the afternoon of oestrus suggests a role for dopamine in the generation of the oestrous prolactin surge.
Resumo:
Evidence indicates that endogenous opioids play a role in body temperature (Tb) regulation in mammals but no data exist about the involvement of the specific opioid receptors, mu, kappa and delta, in the reduction of Tb induced by hypoxia. Thus, we investigated the participation of these opioid receptors in the anteroventral preoptic region (AVPO) in hypoxic decrease of Th. To this end, Th of unanesthetized Wistar rats was monitored by temperature data loggers before and after intra-AVPO microinjection of the selective kappa-opioid receptor antagonist nor-binaltorphimine dihydrochloride (nor-BNI; 0.1 and 1.0 mu g/100 nL/animal), the selective mu-opioid receptor antagonist D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH(2) cyclic (CTAP; 0.1 and 1.0 mu g/100 nL/animal), and the selective delta-opioid receptor antagonist Naltrindole (0.06 and 0.6 mu g/100 nL/animal) or saline (vehicle, 100 nu animal), during normoxia and hypoxia (7% inspired O(2)). Under normoxia, no effect of opioid antagonists on Th was observed. Hypoxia induced Th to reduce in vehicle group, a response that was inhibited by the microinjection intra-AVPO of nor-BNI. In contrast, CTAP and Naltrindole did not change Th during hypoxia but caused a longer latency for the return of Th to the normoxic values just after low O(2) exposure. Our results indicate the kappa-opioid receptor in the AVPO is important for the reduction of Th during hypoxia while the mu and delta receptors are involved in the increase of Th during normoxia post-hypoxia. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Locus coeruleus (LC) is involved in the LHRH regulation by gonadal steroids. We investigated the expression of progesterone and estrogen receptors (PR; ER) in LC neurons of ER alpha (alpha ERKO) or ER beta (beta ERKO) knockout mice, and their wild-type (alpha WT and beta WT). Immunocytochemical studies showed that LC expresses PR and both ERs, although ER beta was more abundant. Estradiol benzoate (EB) decreased ER alpha-positive cells in WT and beta ERKO mice, and progesterone caused a further reduction, whereas none of the steroids influenced ER beta expression. ER beta deletion increased ER alpha while ER alpha deletion did not alter ER beta expression. In both WT mice, EB increased PR expression, which was diminished by progesterone. These steroid effects were also observed in alpha ERKO animals but to a lesser extent, suggesting that ER alpha is partially responsible for the estrogenic induction of PR in LC. Steroid effects on PR in beta ERKO mice were similar to those in the alpha ERKO but to a lesser extent, probably because PR expression was already high in the oil-treated group. This expression seems to be specific of LC neurons, since it was not observed in other areas studied, the preoptic area and ventromedial nucleus of hypothalamus. These findings show that LC in mice expresses alpha ER, beta ER, and PR, and that a balance between them may be critical for the physiological control of reproductive function.
Resumo:
Chronic L-DOPA pharmacotherapy in Parkinson`s disease is often, accompanied by the development of abnormal and excessive movements known as L-DOPA-induced dyskinesia. Rats with 6-hydroxydopamine lesion of dopaminergic neurons chronically treated with L-DOPA develop a rodent analog of this dyskinesia characterized by severe axial, limb, locomotor and orofacial abnormal involuntary movements. While the mechanisms by which these effects occur are not clear, they may involve the nitric oxide system. In the present study we investigate if nitric oxide synthase inhibitors can prevent dyskinesias induced by repeated administration Of L-DOPA in rats with unilateral 6-hydroxydopamine lesion. Chronic L-DOPA (high fixed dose, 100 mg/kg; low escalating dose, 10-30 mg/kg) treatment induced progressive dyskinesia changes. Two nitric oxide synthase inhibitors, 7-nitroindazole (1-30 mg/kg) and NG-nitro-L-arginine (50 mg/kg), given 30 min before L-DOPA, attenuate dyskinesia. 7-Nitroindazolee also improved motor performance of these animals in the rota-rod test. These results suggest the possibility that nitric oxide synthase inhibitors may be useful to treat L-DOPA.-Induced dyskinesia. (C) 2009 IBRO. Published by Elsevier Ltd. All rights reserved.
The Effect of TAK-778 on Gene Expression of Osteoblastic Cells Is Mediated Through Estrogen Receptor
Resumo:
This study evaluated the effect of TAK-778 [(2R, 4S)-(-)-N-(4-diethoxyphosphorylmethylphenyl)-1,2,4,5-tetrahydro-4-methyl-7,8-methylenedioxy-5-oxo-3-benzothiepin-2-carboxamide)] on in vitro osteogenic events and on gene expression of osteoblastic cells derived from human alveolar bone and the participation of estrogen receptors (ERs) on such effect. Osteoblastic cells were subcultured, with or without TAK-778 (10(-5) M), to evaluate cell growth and viability, total protein content, and alkaline phosphatase (ALP) activity at 7, 14, and 21 days; bone-like formation at 21 days; and gene expression, using cDNA microarray, at 7 days. Also, osteoblastic cells were exposed to TAK-778 (10-5 M) combined to ICI182,780, a nonspecific ER antagonist (10(-6) M), and gene expression was evaluated by real-time polymerase chain reaction (PCR) at 7 days. TAK-778 induced a reduction in culture growth and an increase in cell synthesis, ALP activity, and bone-like formation. The cDNA microarray showed genes associated with cell adhesion and differentiation, skeletal development, ossification, and transforming growth factor-P receptor signaling pathway, with a tendency to be higher expressed in cells exposed to TAK-778. The gene expression of ALP, osteocalcin, Msh homeobox 2, receptor activator of NF-kappa B ligand, and intercellular adhesion molecule 1 was increased by TAK-778 as demonstrated by real-time PCR, and this effect was antagonized by ICI182,780. The present results demonstrated that TAK-778 acts at a transcriptional level to enhance the in vitro osteogenic process and that its effect on gene expression of osteoblastic cells is mediated, at least partially, through ERs. Based on these findings, TAK-778 could be considered in the treatment of bone metabolic disorders. Exp Biol Med 234:190-199, 2009
Resumo:
Aim: In the present study, we assessed the role of 5-hydroxytryptamine (5-HT) receptors (5-HT1A, 5-HT2 and 5-HT7) in the nucleus raphe magnus (NRM) on the ventilatory and thermoregulatory responses to hypoxia. Methods: To this end, pulmonary ventilation (V-E) and body temperature (T-b) of male Wistar rats were measured in conscious rats, before and after a 0.1 mu L microinjection of WAY-100635 (5-HT1A receptor antagonist, 3 mu g 0.1 mu L-1, 56 mM), ketanserin (5-HT2 receptor antagonist, 2 mu g 0.1 mu L-1, 36 mM) and SB269970 (5-HT7 receptor antagonist, 4 mu g 0.1 mu L-1, 103 mM) into the NRM, followed by 60 min of severe hypoxia exposure (7% O-2). Results: Intra-NMR microinjection of vehicle (control rats) or 5-HT antagonists did not affect V-E or T-b during normoxic conditions. Exposure of rats to 7% O-2 evoked a typical hypoxia-induced anapyrexia after vehicle microinjections, which was not affected by microinjection of WAY-100635, SB269970 or ketanserin. The hypoxia-induced hyperpnoea was not affected by SB269970 and ketanserin intra-NMR. However, the treatment with WAY-100635 intra-NRM attenuated the hypoxia-induced hyperpnoea. Conclusion: These data suggest that 5-HT acting on 5-HT1A receptors in the NRM increases the hypoxic ventilatory response.
Growth hormone (GH)/GH receptor expression and GH-mediated effects during early bovine embryogenesis
Resumo:
Pituitary growth hormone (GH) stimulates postnatal growth and metabolism. The role of CH and its receptor (GHR) during prenatal development, however, is still controversial. As shown by reverse transcription polymerase chain reaction (RT-PCR), bovine in vitro fertilization embryos synthesized the transcript of GHR from Day 2 of embryonic life onwards. Real time RT-PCR revealed that synthesis of GHR mRNA was increased 5.9-fold in 6-day-old embryos compared with 2-day-old embryos. Using in situ hybridization, the mRNA encoding GHR was predominantly localized to the inner cell mass of blastocysts. The GHR protein was first visualized 3 days after fertilization. GH-specific transcripts were first detected in embryos on Day 8 of in vitro culture. As shown by transmission electron microscopy, GH treatment resulted in elimination of glycogen storage in 6- to 8-day-old embryos and an increase in exocytosis of lipid vesicles. These results suggest that a functional GHR able to modulate carbohydrate and lipid metabolism is synthesized during preimplantation development of the bovine embryo and that this GHR may be subject to activation by embryonic GH after Day 8.
Resumo:
GH actions are dependent on receptor dimerization. The GH receptor antagonist, B2036-PEG, has been developed for treating acromegaly. B2036 has mutations in site 1 to enhance receptor binding and in site 2 to block receptor dimerization. Pegylation (B2036-PEG) increases half-life and lowers immunogenicity, but high concentrations are required to control insulin-like growth factor-I levels. We examined antagonist structure and function and the impact of pegylation on biological efficacy. Unpegylated B2036 had a 4.5-fold greater affinity for GH binding protein (GHBP) than GH but similar affinity for membrane receptor. Pegylation substantially reduced membrane binding affinity and receptor antagonism, as assessed by a transcription assay, by 39- and 20-fold, respectively. GHBP reduced antagonist activity of unpegylated B2036 but did not effect antagonism by B2036-PEG. B2036 down-regulated receptors, and membrane binding sites doubled in the presence of dimerization-blocking antibodies, suggesting that B2036 binds to a receptor dimer. It is concluded that the high concentration requirement of B2036-PEG for clinical efficacy relates to pegylation, which decreases binding to membrane receptor but has the advantages of reduced clearance, immunogenicity, and interactions with GHBP. Our studies suggest that B2036 binds to a receptor dimer and induces internalization but not signaling.
Resumo:
Concentrations of follicle-stimulating hormone (FSH) have an important role in multiple ovulation. An association has been reported between mutations in the FSH receptor (FSHR) in a family with Increased twinning frequency. We sequenced the transmembrane region of FSHR (located on chromosome 2) in 21 unrelated mothers of dizygotic twins and found no differences to the published sequence. A linkage study of 183 sister pairs and trios, in which all sisters had given birth to spontaneous dizygotic twins, excluded linkage to this region of chromosome 2. Wa conclude that mutations in FSHR are not a common cause of familial dizygotic twinning.
Resumo:
Exposure of insulin-sensitive tissues to free fatty acids can impair glucose disposal through inhibition of carbohydrate oxidation and glucose transport. However, certain fatty acids and their derivatives can also act as endogenous ligands for peroxisome proliferator-activated receptor gamma (PPARgamma ), a nuclear receptor that positively modulates insulin sensitivity. To clarify the effects of externally delivered fatty acids on glucose uptake in an insulin-responsive cell type, we systematically examined the effects of a range of fatty acids on glucose uptake in 3T3-L1 adipocytes. Of the fatty acids examined, arachidonic acid (AA) had the greatest positive effects, significantly increasing basal and insulin-stimulated glucose uptake by 1.8- and 2-fold, respectively, with effects being maximal at 4 h at which time membrane phospholipid content of AA was markedly increased. The effects of AA were sensitive to the inhibition of protein synthesis but were unrelated to changes in membrane fluidity. AA had no effect on total cellular levels of glucose transporters, but significantly increased levels of GLUT1 and GLUT4 at the plasma membrane. While the effects of AA were insensitive to cyclooxygenase inhibition, the lipoxygenase inhibitor, nordihydroguaiaretic acid, substantially blocked the AA effect on basal glucose uptake. Furthermore, adenoviral expression of a dominant-negative PPARgamma mutant attenuated the AA potentiation of basal glucose uptake. Thus, AA potentiates basal and insulin-stimulated glucose uptake in 3T3-L1 adipocytes by a cyclooxygenase-independent mechanism that increases the levels of both GLUT1 and GLUT4 at the plasma membrane. These effects are at least partly dependent on de novo protein synthesis, an intact lipoxygenase pathway and the activation of PPARgamma with these pathways having a greater role in the absence than in the presence of insulin.
Resumo:
1. Evidence from recent experimental and clinical studies suggests that excessive circulating levels of aldosterone can bring about adverse cardiovascular sequelae independent of the effects on blood pressure. Examples of these sequelae are the development of myocardial and vascular fibrosis in uninephrectomized, salt-loaded rats infused with mineralocorticoids and, in humans, an association of aldosterone with left ventricular hypertrophy, impaired diastolic and systolic function, salt and water retention causing aggravation of congestion in patients with established congestive cardiac failure (CCF), reduced vascular compliance and an increased risk of arrhythmias (resulting from intracardiac fibrosis, hypokalaemia, hypomagnesaemia, reduced baroreceptor sensitivity and potentiation of catecholamine effects). 2. These sequelae of aldosterone excess may contribute to the pathogenesis and worsen the prognosis of CCF and hypertension. 3. The heart and blood vessels may be capable of extra-adrenal aldosterone biosynthesis, raising the possibility that aldosterone may have paracrine or autocrine (and not just endocrine) effects on cardiovascular tissues. 4. The high prevalence of CCF, which is associated with secondary aldosteronism, and primary aldosteronism (PAL; recently recognized to be a much more common cause of hypertension than was previously thought) argue for an important role for aldosterone excess as a cause of cardiovascular injury. 5. The recognition of non-blood pressure-dependent adverse sequelae of aldosterone excess raises the question as to whether normotensive individuals with PAL, who have been detected as a result of genetic or biochemical screening among families with inherited forms of PAL, are at excess risk of cardiovascular events. 6. Provided that patients are carefully investigated in order to permit the appropriate selection of specific surgical (laparoscopic adrenalectomy for PAL that lateralizes on adrenal venous sampling) or medical (treatment with aldosterone antagonist medications) management and safety considerations for the use of aldosterone antagonists are kept in mind, the appreciation of a widening role for aldosterone in cardiovascular disease should provide a substantially better outlook for many patients with CCF and hypertension.
Resumo:
The ligand-binding region of the low-density lipoprotein (LDL) receptor is formed by seven N-terminal, imperfect, cysteine-rich (LB) modules. This segment is followed by an epidermal growth factor precursor homology domain with two N-terminal, tandem, EGF-like modules that are thought to participate in LDL binding and recycling of the endocytosed receptor to the cell surface. EGF-A and the concatemer, EGF-AB, of these modules were expressed in Escherichia coli. Correct protein folding of EGF-A and the concatemer EGF-AB was achieved in the presence or absence of calcium ions, in contrast to the LB modules, which require them for correct folding. Homonuclear and heteronuclear H-1-N-15 NMR spectroscopy at 17.6 T was used to determine the three-dimensional structure of the concatemer. Both modules are formed by two pairs of short, anti-parallel beta -strands. In the concatemer, these modules have a fixed relative orientation, stabilized by calcium ion-binding and hydrophobic interactions at the interface. N-15 longitudinal and transverse relaxation rates, and {H-1}-N-15 heteronuclear NOEs were used to derive a model-free description of the backbone dynamics of the molecule. The concatemer appears relatively rigid, particularly near the calcium ion-binding site at the module interface, with an average generalized order parameter of 0.85 +/- 0.11. Some mutations causing familial hypercholesterolemia may now be rationalized. Mutations of D41, D43 and E44 in the EGF-B calcium ion-binding region may affect the stability of the linker and thus the orientation of the tandem modules. The diminutive core also provides little structural stabilization, necessitating the presence of disulfide bonds. The structure and dynamics of EGF-AB contrast with the N-terminal LB modules, which require calcium ions both for folding to form the correct disulfide connectivities and for maintenance of the folded structure, and are connected by highly mobile linking peptides. (C) 2001 Academic Press.
Resumo:
Monocyte macrophages (M phi) are thought to be the principal target cells for the dengue viruses (DV), the cause of dengue fever and hemorrhagic fever. Cell attachment is mediated by the virus envelope (E) protein, but the host-cell receptors remain elusive. Currently, candidate receptor molecules include proteins, Fc receptors, glycosaminoglycans (GAGs) and lipopolysaccharide binding CD14-associated molecules. Here, we show that in addition to M phi, cells of the T- and B-cell lineages, and including cells lacking GAGs, can bind and become infected with DV. The level of virus binding varied widely between cell lines and, notably, between virus strains within a DV serotype. The latter difference may be ascribable to one or more amino acid differences in domain II of the E protein. Heparin had no significant effect on DV binding, while heparinase treatment of cells in all cases increased DV binding, further supporting the contention that GAGs are not required for DV binding and infection of human cells. In contrast to a recent report, we found that lipopolysaccharide (LPS) had either no effect or enhanced DV binding to, and infection of various human leukocyte cell lines, while in all virus-cell combinations, depletion of Ca2+/Mg2+ enhanced DV binding. This argues against involvement of beta (2) integrins in virus-host cell interactions, a conclusion in accord with the demonstration of three virus binding membrane proteins of < 75 kDa. Collectively, the results of this study question the purported exclusive importance of the E protein domain III in DV binding to host cells and point to a far more complex interaction between various target cells and, notably, individual DV strains. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
The isolation and characterisation of a new macrocyclic hexaamine trans-6,13-bis(ferrocenylmethylamino)-6,13-dimethyl-1,4,8,11-tetraazacyclotetradecane (L-2) bearing two ferrocenyl groups appended to its exocyclic amines is reported. The crystal structures of L-2 and its dihydrochloride salt L-2. 2HCl . 2H(2)O have been determined. In the latter case cation-anion hydrogen bonding is observed in the solid state. Substrate binding by the electroactive L-2 in MeCN-CH2Cl2 solution has been examined by cyclic voltammetry and reveals the receptor electrochemically to recognise benzoate and chloride anions. The macrocyclic N-donors may also bind transition metal cations such as Cu-II and Zn-II.
Resumo:
Epidemiological studies suggest that ovarian cancer is an endocrine-related tumour, and progesterone exposure specifically may decrease the risk of ovarian cancer. To assess whether the progesterone receptor (PR) exon 4 valine to leucine amino acid variant is associated with specific tumour characteristics or with overall risk of ovarian cancer, we examined 551 cases of epithelial ovarian cancer and 298 unaffected controls for the underlying G-->T nucleotide substitution polymorphism. Stratification of the ovarian cancer cases according to tumour behaviour (low malignant potential or invasive), histology, grade or stage failed to reveal any heterogeneity with respect to the genotype defined by the PR exon 4 polymorphism. Furthermore, the genotype distribution did not differ significantly between ovarian cancer cases and unaffected controls. Compared with the GG genotype, the age-adjusted odds ratio (95% confidence interval) for risk of ovarian cancer was 0.78 (0.57-1.08) for the GT genotype, and 1.39 (0.47-4.14) for the TT genotype. In conclusion, the PR exon 4 codon 660 leucine variant encoded by the T allele does not appear to be associated with ovarian tumour behaviour, histology, stage or grade. This variant is also not associated with an increased risk of ovarian cancer, and is unlikely to be associated with a large decrease in ovarian cancer risk, although we cannot rule out a moderate inverse association between the GT genotype and ovarian cancer.