966 resultados para distributed cognition theory
Resumo:
The extension of density functional theory (DFT) to include pairing correlations without formal violation of the particle-number conservation condition is described. This version of the theory can be considered as a foundation of the application of existing DFT plus pairing approaches to atoms, molecules, ultracooled and magnetically trapped atomic Fermi gases, and atomic nuclei where the number of particles is conserved exactly. The connection with Hartree-Fock-Bogoliubov (HFB) theory is discussed, and the method of quasilocal reduction of the nonlocal theory is also described. This quasilocal reduction allows equations of motion to be obtained which are much simpler for numerical solution than the equations corresponding to the nonlocal case. Our theory is applied to the study of some even Sn isotopes, and the results are compared with those obtained in the standard HFB theory and with the experimental ones.
Resumo:
We consider the effects of external, multiplicative white noise on the relaxation time of a general representation of a bistable system from the points of view provided by two, quite different, theoretical approaches: the classical Stratonovich decoupling of correlations and the new method due to Jung and Risken. Experimental results, obtained from a bistable electronic circuit, are compared to the theoretical predictions. We show that the phenomenon of critical slowing down appears as a function of the noise parameters, thereby providing a correct characterization of a noise-induced transition.
Resumo:
We study the Becchi-Rouet-Stora-Tyutin (BRST) structure of a self-interacting antisymmetric tensor gauge field, which has an on-shell null-vector gauge transformation. The Batalin-Vilkovisky covariant general formalism is briefly reviewed, and the issue of on-shell nilpotency of the BRST transformation is elucidated. We establish the connection between the covariant and the canonical BRST formalisms for our particular theory. Finally, we point out the similarities and differences with Wittens string field theory.
Resumo:
Summary
Resumo:
Assuming selective vulnerability of short association U-fibers in early Alzheimer's disease (AD), we quantified demyelination of the surface white matter (dSWM) with magnetization transfer ratio (MTR) in 15 patients (Clinical Dementia Rating Scale [CDR] 0.5-1; Functional Assessment Staging [FAST]: 3-4) compared with 15 controls. MTRs were computed for 39 areas in each hemisphere. We found a bilateral MTR decrease in the temporal, cingulate, parietal, and prefrontal areas. With linear discriminant analysis, we successfully classified all the participants with 3 variates including the cuneus, parahippocampal, and superior temporal regions of the left hemisphere. The pattern of dSWM changed with the age of AD onset. In early onset patients, we found bilateral posterior demyelination spreading to the temporal areas in the left hemisphere. The late onset patients showed a distributed bilateral pattern with the temporal and cingulate areas strongly affected. A correlation with Mini Mental State Examination (MMSE), Lexis, and memory tests revealed the dSWM impact on cognition. A specific landscape of dSWM in early AD shows the potential of MTR imaging as an in vivo biomarker superior to currently used techniques.
Resumo:
Classical transport theory is employed to analyze the hot quark-gluon plasma at the leading order in the coupling constant. A condition on the (covariantly conserved) color current is obtained. From this condition, the generating functional of hard thermal loops with an arbitrary number of soft external bosonic legs can be derived. Our approach, besides being more direct than alternative ones, shows that hard thermal loops are essentially classical.
Resumo:
Using density functional theory, we investigate the structure of mixed 3HeN3-4HeN4 droplets with an embedded impurity (Xe atom or HCN molecule) which pins a quantized vortex line. We find that the dopant+vortex+4HeN4 complex, which in a previous work [F. Dalfovo et al., Phys. Rev. Lett. 85, 1028 (2000)] was found to be energetically stable below a critical size Ncr, is robust against the addition of 3He. While 3He atoms are distributed along the vortex line and on the surface of the 4He drop, the impurity is mostly coated by 4He atoms. Results for N4 = 500 and a number of 3He atoms ranging from 0 to 100 are presented, and the binding energy of the dopant to the vortex line is determined.
Resumo:
A theory is presented to explain the statistical properties of the growth of dye-laser radiation. Results are in agreement with recent experimental findings. The different roles of pump-noise intensity and correlation time are elucidated.