907 resultados para distinct element method
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
The power required to operate large gyratory mills often exceeds 10 MW. Hence, optimisation of the power consumption will have a significant impact on the overall economic performance and environmental impact of the mineral processing plant. In most of the published models of tumbling mills (e.g. [Morrell, S., 1996. Power draw of wet tumbling mills and its relationship to charge dynamics, Part 2: An empirical approach to modelling of mill power draw. Trans. Inst. Mining Metall. (Section C: Mineral Processing Ext. Metall.) 105, C54-C62. Austin, L.G., 1990. A mill power equation for SAG mills. Miner. Metall. Process. 57-62]), the effect of lifter design and its interaction with mill speed and filling are not incorporated. Recent experience suggests that there is an opportunity for improving grinding efficiency by choosing the appropriate combination of these variables. However, it is difficult to experimentally determine the interactions of these variables in a full scale mill. Although some work has recently been published using DEM simulations, it was basically. limited to 2D. The discrete element code, Particle Flow Code 3D (PFC3D), has been used in this work to model the effects of lifter height (525 cm) and mill speed (50-90% of critical) on the power draw and frequency distribution of specific energy (J/kg) of normal impacts in a 5 m diameter autogenous (AG) mill. It was found that the distribution of the impact energy is affected by the number of lifters, lifter height, mill speed and mill filling. Interactions of lifter design, mill speed and mill filling are demonstrated through three dimensional distinct element methods (3D DEM) modelling. The intensity of the induced stresses (shear and normal) on lifters, and hence the lifter wear, is also simulated. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
The best accepted method for design of autogenous and semi-autogenous (AG/SAG) mills is to carry out pilot scale test work using a 1.8 m diameter by 0.6 m long pilot scale test mill. The load in such a mill typically contains 250,000-450,000 particles larger than 6 mm, allowing correct representation of more than 90% of the charge in Discrete Element Method (DEM) simulations. Most AG/SAG mills use discharge grate slots which are 15 mm or more in width. The mass in each size fraction usually decreases rapidly below grate size. This scale of DEM model is now within the possible range of standard workstations running an efficient DEM code. This paper describes various ways of extracting collision data front the DEM model and translating it into breakage estimates. Account is taken of the different breakage mechanisms (impact and abrasion) and of the specific impact histories of the particles in order to assess the breakage rates for various size fractions in the mills. At some future time, the integration of smoothed particle hydrodynamics with DEM will allow for the inclusion of slurry within the pilot mill simulation. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
The boundary element method (BEM) was used to study galvanic corrosion using linear and logarithmic boundary conditions. The linear boundary condition was implemented by using the linear approach and the piecewise linear approach. The logarithmic boundary condition was implemented by the piecewise linear approach. The calculated potential and current density distribution were compared with the prior analytical results. For the linear boundary condition, the BEASY program using the linear approach and the piecewise linear approach gave accurate predictions of the potential and the galvanic current density distributions for varied electrolyte conditions, various film thicknesses, various electrolyte conductivities and various area ratio of anode/cathode. The 50-point piecewise linear method could be used with both linear and logarithmic polarization curves.
Resumo:
The influence of three dimensional effects on isochromatic birefringence is evaluated for planar flows by means of numerical simulation. Two fluid models are investigated in channel and abrupt contraction geometries. In practice, the flows are confined by viewing windows, which alter the stresses along the optical path. The observed optical properties differ therefore from their counterpart in an ideal two-dimensional flow. To investigate the influence of these effects, the stress optical rule and the differential propagation Mueller matrix are used. The material parameters are selected so that a retardation of multiple orders is achieved, as is typical for highly birefringent melts. Errors due to three dimensional effects are mainly found on the symmetry plane, and increase significantly with the flow rate. Increasing the geometric aspect ratio improve the accuracy provided that the error on the retardation is less than one order. (C) 2004 Elsevier B.V. All rights reserved.