911 resultados para dieletric devices


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electronic applications are nowadays converging under the umbrella of the cloud computing vision. The future ecosystem of information and communication technology is going to integrate clouds of portable clients and embedded devices exchanging information, through the internet layer, with processing clusters of servers, data-centers and high performance computing systems. Even thus the whole society is waiting to embrace this revolution, there is a backside of the story. Portable devices require battery to work far from the power plugs and their storage capacity does not scale as the increasing power requirement does. At the other end processing clusters, such as data-centers and server farms, are build upon the integration of thousands multiprocessors. For each of them during the last decade the technology scaling has produced a dramatic increase in power density with significant spatial and temporal variability. This leads to power and temperature hot-spots, which may cause non-uniform ageing and accelerated chip failure. Nonetheless all the heat removed from the silicon translates in high cooling costs. Moreover trend in ICT carbon footprint shows that run-time power consumption of the all spectrum of devices accounts for a significant slice of entire world carbon emissions. This thesis work embrace the full ICT ecosystem and dynamic power consumption concerns by describing a set of new and promising system levels resource management techniques to reduce the power consumption and related issues for two corner cases: Mobile Devices and High Performance Computing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As land is developed, the impervious surfaces that are created increase the amount of runoff during rainfall events, disrupting the natural hydrologic cycle, with an increment in volume of runoff and in pollutant loadings. Pollutants deposited or derived from an activity on the land surface will likely end up in stormwater runoff in some concentration, such as nutrients, sediment, heavy metals, hydrocarbons, gasoline additives, pathogens, deicers, herbicides and pesticides. Several of these pollutants are particulate-bound, so it appears clear that sediment removal can provide significant water-quality improvements and it appears to be important the knowledge of the ability of stromwater treatment devices to retain particulate matter. For this reason three different units which remove sediments have been tested through laboratory. In particular a roadside gully pot has been tested under steady hydraulic conditions, varying the characteristics of the influent solids (diameter, particle size distribution and specific gravity). The efficiency in terms of particles retained has been evaluated as a function of influent flow rate and particles characteristics; results have been compared to efficiency evaluated applying an overflow rate model. Furthermore the role of particles settling velocity in efficiency determination has been investigated. After the experimental runs on the gully pot, a standard full-scale model of an hydrodynamic separator (HS) has been tested under unsteady influent flow rate condition, and constant solid concentration at the input. The results presented in this study illustrate that particle separation efficiency of the unit is predominately influenced by operating flow rate, which strongly affects the particles and hydraulic residence time of the system. The efficiency data have been compared to results obtained from a modified overflow rate model; moreover the residence time distribution has been experimentally determined through tracer analyses for several steady flow rates. Finally three testing experiments have been performed for two different configurations of a full-scale model of a clarifier (linear and crenulated) under unsteady influent flow rate condition, and constant solid concentration at the input. The results illustrate that particle separation efficiency of the unit is predominately influenced by the configuration of the unit itself. Turbidity measures have been used to compare turbidity with the suspended sediments concentration, in order to find a correlation between these two values, which can allow to have a measure of the sediments concentration simply installing a turbidity probe.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work the numerical coupling of thermal and electric network models with model equations for optoelectronic semiconductor devices is presented. Modified nodal analysis (MNA) is applied to model electric networks. Thermal effects are modeled by an accompanying thermal network. Semiconductor devices are modeled by the energy-transport model, that allows for thermal effects. The energy-transport model is expandend to a model for optoelectronic semiconductor devices. The temperature of the crystal lattice of the semiconductor devices is modeled by the heat flow eqaution. The corresponding heat source term is derived under thermodynamical and phenomenological considerations of energy fluxes. The energy-transport model is coupled directly into the network equations and the heat flow equation for the lattice temperature is coupled directly into the accompanying thermal network. The coupled thermal-electric network-device model results in a system of partial differential-algebraic equations (PDAE). Numerical examples are presented for the coupling of network- and one-dimensional semiconductor equations. Hybridized mixed finite elements are applied for the space discretization of the semiconductor equations. Backward difference formluas are applied for time discretization. Thus, positivity of charge carrier densities and continuity of the current density is guaranteed even for the coupled model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Organic semiconductors have great promise in the field of electronics due to their low cost in term of fabrication on large areas and their versatility to new devices, for these reasons they are becoming a great chance in the actual technologic scenery. Some of the most important open issues related to these materials are the effects of surfaces and interfaces between semiconductor and metals, the changes caused by different deposition methods and temperature, the difficulty related to the charge transport modeling and finally a fast aging with time, bias, air and light, that can change the properties very easily. In order to find out some important features of organic semiconductors I fabricated Organic Field Effect Transistors (OFETs), using them as characterization tools. The focus of my research is to investigate the effects of ion implantation on organic semiconductors and on OFETs. Ion implantation is a technique widely used on inorganic semiconductors to modify their electrical properties through the controlled introduction of foreign atomic species in the semiconductor matrix. I pointed my attention on three major novel and interesting effects, that I observed for the first time following ion implantation of OFETs: 1) modification of the electrical conductivity; 2) introduction of stable charged species, electrically active with organic thin films; 3) stabilization of transport parameters (mobility and threshold voltage). I examined 3 different semiconductors: Pentacene, a small molecule constituted by 5 aromatic rings, Pentacene-TIPS, a more complex by-product of the first one, and finally an organic material called Pedot PSS, that belongs to the branch of the conductive polymers. My research started with the analysis of ion implantation of Pentacene films and Pentacene OFETs. Then, I studied totally inkjet printed OFETs made of Pentacene-TIPS or PEDOT-PSS, and the research will continue with the ion implantation on these promising organic devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The quest for universal memory is driving the rapid development of memories with superior all-round capabilities in non-volatility, high speed, high endurance and low power. The memory subsystem accounts for a significant cost and power budget of a computer system. Current DRAM-based main memory systems are starting to hit the power and cost limit. To resolve this issue the industry is improving existing technologies such as Flash and exploring new ones. Among those new technologies is the Phase Change Memory (PCM), which overcomes some of the shortcomings of the Flash such as durability and scalability. This alternative non-volatile memory technology, which uses resistance contrast in phase-change materials, offers more density relative to DRAM, and can help to increase main memory capacity of future systems while remaining within the cost and power constraints. Chalcogenide materials can suitably be exploited for manufacturing phase-change memory devices. Charge transport in amorphous chalcogenide-GST used for memory devices is modeled using two contributions: hopping of trapped electrons and motion of band electrons in extended states. Crystalline GST exhibits an almost Ohmic I(V) curve. In contrast amorphous GST shows a high resistance at low biases while, above a threshold voltage, a transition takes place from a highly resistive to a conductive state, characterized by a negative differential-resistance behavior. A clear and complete understanding of the threshold behavior of the amorphous phase is fundamental for exploiting such materials in the fabrication of innovative nonvolatile memories. The type of feedback that produces the snapback phenomenon is described as a filamentation in energy that is controlled by electron–electron interactions between trapped electrons and band electrons. The model thus derived is implemented within a state-of-the-art simulator. An analytical version of the model is also derived and is useful for discussing the snapback behavior and the scaling properties of the device.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel nanosized and addressable sensing platform based on membrane coated plasmonic particles for detection of protein adsorption using dark field scattering spectroscopy of single particles has been established. To this end, a detailed analysis of the deposition of gold nanorods on differently functionalized substrates is performed in relation to various factors (such as the pH, ionic strength, concentration of colloidal suspension, incubation time) in order to find the optimal conditions for obtaining a homogenous distribution of particles at the desired surface number density. The possibility of successfully draping lipid bilayers over the gold particles immobilized on glass substrates depends on the careful adjustment of parameters such as membrane curvature and adhesion properties and is demonstrated with complementary techniques such as phase imaging AFM, fluorescence microscopy (including FRAP) and single particle spectroscopy. The functionality and sensitivity of the proposed sensing platform is unequivocally certified by the resonance shifts of the plasmonic particles that were individually interrogated with single particle spectroscopy upon the adsorption of streptavidin to biotinylated lipid membranes. This new detection approach that employs particles as nanoscopic reporters for biomolecular interactions insures a highly localized sensitivity that offers the possibility to screen lateral inhomogeneities of native membranes. As an alternative to the 2D array of gold nanorods, short range ordered arrays of nanoholes in optically transparent gold films or regular arrays of truncated tetrahedron shaped particles are built by means of colloidal nanolithography on transparent substrates. Technical issues mainly related to the optimization of the mask deposition conditions are successfully addressed such that extended areas of homogenously nanostructured gold surfaces are achieved. Adsorption of the proteins annexin A1 and prothrombin on multicomponent lipid membranes as well as the hydrolytic activity of the phospholipase PLA2 were investigated with classical techniques such as AFM, ellipsometry and fluorescence microscopy. At first, the issues of lateral phase separation in membranes of various lipid compositions and the dependency of the domains configuration (sizes and shapes) on the membrane content are addressed. It is shown that the tendency for phase segregation of gel and fluid phase lipid mixtures is accentuated in the presence of divalent calcium ions for membranes containing anionic lipids as compared to neutral bilayers. Annexin A1 adsorbs preferentially and irreversibly on preformed phosphatidylserine (PS) enriched lipid domains but, dependent on the PS content of the bilayer, the protein itself may induce clustering of the anionic lipids into areas with high binding affinity. Corroborated evidence from AFM and fluorescence experiments confirm the hypothesis of a specifically increased hydrolytic activity of PLA2 on the highly curved regions of membranes due to a facilitated access of lipase to the cleavage sites of the lipids. The influence of the nanoscale gold surface topography on the adhesion of lipid vesicles is unambiguously demonstrated and this reveals, at least in part, an answer for the controversial question existent in the literature about the behavior of lipid vesicles interacting with bare gold substrates. The possibility of formation monolayers of lipid vesicles on chemically untreated gold substrates decorated with gold nanorods opens new perspectives for biosensing applications that involve the radiative decay engineering of the plasmonic particles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this thesis is the power transient analysis concerning experimental devices placed within the reflector of Jules Horowitz Reactor (JHR). Since JHR material testing facility is designed to achieve 100 MW core thermal power, a large reflector hosts fissile material samples that are irradiated up to total relevant power of 3 MW. MADISON devices are expected to attain 130 kW, conversely ADELINE nominal power is of some 60 kW. In addition, MOLFI test samples are envisaged to reach 360 kW for what concerns LEU configuration and up to 650 kW according to HEU frame. Safety issues concern shutdown transients and need particular verifications about thermal power decreasing of these fissile samples with respect to core kinetics, as far as single device reactivity determination is concerned. Calculation model is conceived and applied in order to properly account for different nuclear heating processes and relative time-dependent features of device transients. An innovative methodology is carried out since flux shape modification during control rod insertions is investigated regarding the impact on device power through core-reflector coupling coefficients. In fact, previous methods considering only nominal core-reflector parameters are then improved. Moreover, delayed emissions effect is evaluated about spatial impact on devices of a diffuse in-core delayed neutron source. Delayed gammas transport related to fission products concentration is taken into account through evolution calculations of different fuel compositions in equilibrium cycle. Provided accurate device reactivity control, power transients are then computed for every sample according to envisaged shutdown procedures. Results obtained in this study are aimed at design feedback and reactor management optimization by JHR project team. Moreover, Safety Report is intended to utilize present analysis for improved device characterization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reliable electronic systems, namely a set of reliable electronic devices connected to each other and working correctly together for the same functionality, represent an essential ingredient for the large-scale commercial implementation of any technological advancement. Microelectronics technologies and new powerful integrated circuits provide noticeable improvements in performance and cost-effectiveness, and allow introducing electronic systems in increasingly diversified contexts. On the other hand, opening of new fields of application leads to new, unexplored reliability issues. The development of semiconductor device and electrical models (such as the well known SPICE models) able to describe the electrical behavior of devices and circuits, is a useful means to simulate and analyze the functionality of new electronic architectures and new technologies. Moreover, it represents an effective way to point out the reliability issues due to the employment of advanced electronic systems in new application contexts. In this thesis modeling and design of both advanced reliable circuits for general-purpose applications and devices for energy efficiency are considered. More in details, the following activities have been carried out: first, reliability issues in terms of security of standard communication protocols in wireless sensor networks are discussed. A new communication protocol is introduced, allows increasing the network security. Second, a novel scheme for the on-die measurement of either clock jitter or process parameter variations is proposed. The developed scheme can be used for an evaluation of both jitter and process parameter variations at low costs. Then, reliability issues in the field of “energy scavenging systems” have been analyzed. An accurate analysis and modeling of the effects of faults affecting circuit for energy harvesting from mechanical vibrations is performed. Finally, the problem of modeling the electrical and thermal behavior of photovoltaic (PV) cells under hot-spot condition is addressed with the development of an electrical and thermal model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nowadays microfluidic is becoming an important technology in many chemical and biological processes and analysis applications. The potential to replace large-scale conventional laboratory instrumentation with miniaturized and self-contained systems, (called lab-on-a-chip (LOC) or point-of-care-testing (POCT)), offers a variety of advantages such as low reagent consumption, faster analysis speeds, and the capability of operating in a massively parallel scale in order to achieve high-throughput. Micro-electro-mechanical-systems (MEMS) technologies enable both the fabrication of miniaturized system and the possibility of developing compact and portable systems. The work described in this dissertation is towards the development of micromachined separation devices for both high-speed gas chromatography (HSGC) and gravitational field-flow fractionation (GrFFF) using MEMS technologies. Concerning the HSGC, a complete platform of three MEMS-based GC core components (injector, separation column and detector) is designed, fabricated and characterized. The microinjector consists of a set of pneumatically driven microvalves, based on a polymeric actuating membrane. Experimental results demonstrate that the microinjector is able to guarantee low dead volumes, fast actuation time, a wide operating temperature range and high chemical inertness. The microcolumn consists of an all-silicon microcolumn having a nearly circular cross-section channel. The extensive characterization has produced separation performances very close to the theoretical ideal expectations. A thermal conductivity detector (TCD) is chosen as most proper detector to be miniaturized since the volume reduction of the detector chamber results in increased mass and reduced dead volumes. The microTDC shows a good sensitivity and a very wide dynamic range. Finally a feasibility study for miniaturizing a channel suited for GrFFF is performed. The proposed GrFFF microchannel is at early stage of development, but represents a first step for the realization of a highly portable and potentially low-cost POCT device for biomedical applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The discovery of the Cosmic Microwave Background (CMB) radiation in 1965 is one of the fundamental milestones supporting the Big Bang theory. The CMB is one of the most important source of information in cosmology. The excellent accuracy of the recent CMB data of WMAP and Planck satellites confirmed the validity of the standard cosmological model and set a new challenge for the data analysis processes and their interpretation. In this thesis we deal with several aspects and useful tools of the data analysis. We focus on their optimization in order to have a complete exploitation of the Planck data and contribute to the final published results. The issues investigated are: the change of coordinates of CMB maps using the HEALPix package, the problem of the aliasing effect in the generation of low resolution maps, the comparison of the Angular Power Spectrum (APS) extraction performances of the optimal QML method, implemented in the code called BolPol, and the pseudo-Cl method, implemented in Cromaster. The QML method has been then applied to the Planck data at large angular scales to extract the CMB APS. The same method has been applied also to analyze the TT parity and the Low Variance anomalies in the Planck maps, showing a consistent deviation from the standard cosmological model, the possible origins for this results have been discussed. The Cromaster code instead has been applied to the 408 MHz and 1.42 GHz surveys focusing on the analysis of the APS of selected regions of the synchrotron emission. The new generation of CMB experiments will be dedicated to polarization measurements, for which are necessary high accuracy devices for separating the polarizations. Here a new technology, called Photonic Crystals, is exploited to develop a new polarization splitter device and its performances are compared to the devices used nowadays.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis discusses the design of a system to use wave energy to pump oxygen-rich surface water towards the bottom of the sea. A simple device, called OXYFLUX, is proposed in a scale model and tested in a wave flume in order to validate its supposed theoretical functioning. Once its effectiveness has been demonstrated, a overset mesh, CFD model has been developed and validated by means of the physical model results. Both numerical and physical results show how wave height affects the behavior of the device. Wave heights lower than about 0.5 m overtop the floater and fall into it. As the wave height increases, phase shift between water surface and vertical displacement of the device also increases its influence on the functioning mechanism. In these situations, with wave heights between 0.5 and 0.9 m, the downward flux is due to the higher head established in the water column inside the device respect to the outside wave field. Furthermore, as the wave height grows over 0.9 m, water flux inverts the direction thanks to depression caused by the wave crest pass over the floater. In this situation the wave crest goes over the float but does not go into it and it draws water from the bottom to the surface through the device pipe. By virtue of these results a new shape of the floater has been designed and tested in CFD model. Such new geometry is based on the already known Lazzari’s profile and it aims to grab as much water as possible from the wave crest during the emergence of the floater from the wave field. Results coming from the new device are compared with the first ones in order to identify differences between the two shapes and their possible areas of application.