991 resultados para device lending program
Resumo:
A monolithically integrated MLLD-modulator-MOPA is presented generating 12.5 ps pulses. The Mach-Zehnder modulator allows tunable repetition rates from 14 GHz to 109 MHz, and the MOPA boosts the peak power by 3.2 dB. © 2012 IEEE.
Resumo:
As a variation of the thermally actuated flux pump and the linear type magnetic flux pump (LTMFP), the circular type magnetic flux pump (CTMFP) device is proposed to magnetize a circular shape type-II superconducting thin film and bulk. The basic concept is the same as the thermally actuated flux pump: a circularly symmetric traveling magnetic field is generated below a circular shape superconductor to increase its trapping field. However, this traveling field is created by the three phase windings instead of heating gadolinium block. Apart from the LTMFP, the three phase windings are wound concentrically instead of linearly. The speed of the traveling field is controlled by the AC frequency and the magnitude of the field is controlled by the magnitudes of AC currents. In addition, a coil with DC current is wound around the three phase windings to provide a background field. The concept design is presented in this paper. The magnetic waveforms are analysed numerically by the COMSOL 3.5a software. The impedances of the three phase windings are calculated and a corresponding circuit design is presented. This rig can be used as an advanced tool to study the flux pump behavior of a circular shape superconductor. © 2002-2011 IEEE.
Resumo:
A radiation concentrator device 21 for improved efficiency in solar systems by limiting reflected light, comprising a radiation concentrator element 27 comprising a radiation transmissive surface 29, a radiation receiving device and disposed on the incident radiation side of the concentrator element 27 is a recapture element 23 for recapturing at least a portion of radiation lost from the concentrator element 27, where the recapturing element allows transmission of incident light into the concentrator element 27, recaptures escaping radiation from the concentrator element and reflecting the radiation back into the concentrator element. Also disclosed are radiation concentrator device 21 where the recapture element 23 comprises ridged or grooved structures to increase the internal reflection of the radiation. The concentrator element 27 may also be provided with luminescent materials.
Resumo:
The invention provides a multilayer electronic device having electrodes, formed on a laterally extending first layer, the lateral position of each of at least two adjacent electrodes being defined by a channel in the first layer. Each channel is adjacent a deposition region, the material which forms each electrode substantially covering the deposition region to form a continuous conductive structure.
Resumo:
We are investigating the use of flywheels for energy storage. Flywheel devices need to be of high efficiency and an important source of losses is the bearings. In addition, the requirement is for the devices to have long lifetimes with minimal or no maintenance. Conventional rolling element bearings can and have been used, but a non-contact bearing, such as a superconducting magnetic bearing, is expected to have a longer lifetime and lower losses. At Cambridge we have constructed a flywheel system. Designed to run in vacuum this incorporates a 40kg flywheel supported on superconducting magnetic bearings. The production device will be a 5kW device storing 5 kWh of retrievable energy at 50,000 rpm. The Cambridge system is being developed in parallel with a similar device supported on a conventional bearing. This will allow direct performance comparisons. Although superconducting bearings are increasingly well understood, of major importance are the cryogenics and special attention is being paid to methods of packaging and insulating the superconductors to cut down radiation losses. The work reported here is part of a three-year program of work supported by the EPSRC. © 1999 IEEE.
Resumo:
Firms and other organizations use Technology Roadmapping (TRM) extensively as a framework for supporting research and development of future technologies and products that could sustain a competitive advantage. While the importance of technology strategy has received more attention in recent years, few research studies have examined how roadmapping processes are used to explore the potential convergence of products and services that may be developed in the future. The aim of this paper is to introduce an integrated roadmapping process for services, devices and technologies capable of implementing a smart city development R&D project in Korea. The paper applies a QFD (Quality Function Deployment) method to establish interconnections between services and devices, and between devices and technologies. The method is illustrated by a detailed case study, which shows how different types of roadmap can be coordinated with each other to produce a clear representation of the technological changes and uncertainties associated with the strategic planning of complex innovations. © 2012 Elsevier Inc.
Resumo:
Smooth and continuous ZnO films consisting of densely packed ZnO nanorods (NRs), which can be used for electronic device fabrication, were synthesized using a hydro-thermo-chemical solution deposition method. Such devices would have the novelty of high performance, benefiting from the inherited unique properties of the nanomaterials, and can be fabricated on these smooth films using a conventional, low cost planar process. Photoluminescence measurements showed that the NR films have much stronger shallow donor to valence band emissions than those from discrete ZnO NRs, and hence have the potential for the development of ZnO light emission diodes and lasers, etc. The NR films have been used to fabricate large area surface acoustic wave devices by conventional photolithography. These demonstrated two well-defined resonant peaks and their potential for large area device applications. The chemical solution deposition method is simple, reproducible, scalable and economic. These NR films are suitable for large scale production on cost-effective substrates and are promising for various fields such as sensing systems, renewable energy and optoelectronic applications.
Resumo:
GaAs, InAs, and InGaAs nanowires each exhibit significant potential to drive new applications in electronic and optoelectronic devices. Nevertheless, the development of these devices depends on our ability to fabricate these nanowires with tight control over critical properties, such as nanowire morphology, orientation, crystal structure, and chemical composition. Although GaAs and InAs are related material systems, GaAs and InAs nanowires exhibit very different growth behaviors. An understanding of these growth behaviors is imperative if high-quality ternary InGaAs nanowires are to be realized. This report examines GaAs, InAs, and InGaAs nanowires, and how their growth may be tailored to achieve desirable material properties. GaAs and InAs nanowire growth are compared, with a view toward the growth of high-quality InGaAs nanowires with device-accessible properties. © 2011 IEEE.
Resumo:
Semiconductor nanowires have recently emerged as a new class of materials with significant potential to reveal new fundamental physics and to propel new applications in quantum electronic and optoelectronic devices. Semiconductor nanowires show exceptional promise as nanostructured materials for exploring physics in reduced dimensions and in complex geometries, as well as in one-dimensional nanowire devices. They are compatible with existing semiconductor technologies and can be tailored into unique axial and radial heterostructures. In this contribution we review the recent efforts of our international collaboration which have resulted in significant advances in the growth of exceptionally high quality IIIV nanowires and nanowire heterostructures, and major developments in understanding the electronic energy landscapes of these nanowires and the dynamics of carriers in these nanowires using photoluminescence, time-resolved photoluminescence and terahertz conductivity spectroscopy. © 2011 Elsevier Ltd. All rights reserved.