990 resultados para delta 13C, calcite
Resumo:
A 30 m.y. stable isotopic record of marine-deposited black carbon from regional terrestrial biomass burning from the northern South China Sea reveals photosynthetic pathway evolution for terrestrial ecosystems in the late Cenozoic. This record indicates that C3 plants negatively adjusted their isotopic discrimination and C4 plants appeared gradually as a component of land vegetation in East Asia since the early Miocene, a long time before sudden C4 expansion occurred during the late Miocene to the Pliocene. The changes in terrestrial ecosystems with time can be reasonably related to the evolution of East Asian monsoons, which are thought to have been induced by several intricate mechanisms during the late Cenozoic and could contribute significantly to the post-Miocene marine carbonate isotope decline.
Resumo:
Inter-individual variation in diet within generalist animal populations is thought to be a widespread phenomenon but its potential causes are poorly known. Inter-individual variation can be amplified by the availability and use of allochthonous resources, i.e., resources coming from spatially distinct ecosystems. Using a wild population of arctic fox as a study model, we tested hypotheses that could explain variation in both population and individual isotopic niches, used here as proxy for the trophic niche. The arctic fox is an opportunistic forager, dwelling in terrestrial and marine environments characterized by strong spatial (arctic-nesting birds) and temporal (cyclic lemmings) fluctuations in resource abundance. First, we tested the hypothesis that generalist foraging habits, in association with temporal variation in prey accessibility, should induce temporal changes in isotopic niche width and diet. Second, we investigated whether within-population variation in the isotopic niche could be explained by individual characteristics (sex and breeding status) and environmental factors (spatiotemporal variation in prey availability). We addressed these questions using isotopic analysis and Bayesian mixing models in conjunction with linear mixed-effects models. We found that: i) arctic fox populations can simultaneously undergo short-term (i.e., within a few months) reduction in both isotopic niche width and inter-individual variability in isotopic ratios, ii) individual isotopic ratios were higher and more representative of a marine-based diet for non-breeding than breeding foxes early in spring, and iii) lemming population cycles did not appear to directly influence the diet of individual foxes after taking their breeding status into account. However, lemming abundance was correlated to proportion of breeding foxes, and could thus indirectly affect the diet at the population scale.
Resumo:
The rapid warming of arctic regions during recent decades has been recorded by instrumental monitoring, but the natural climate variability in the past is still sparsely reconstructed across many areas. We have reconstructed past climate changes in subarctic west-central Canada. Stable carbon and oxygen isotope ratios (d13C, d18O) were derived from a single Sphagnum fuscum plant component; alpha-cellulose isolated from stems. Periods of warmer and cooler conditions identified in this region, described in terms of a "Mediaeval Climatic Anomaly" and "Little Ice Age" were registered in the temperature reconstruction based on the d13C record. Some conclusions could be drawn about wet/dry shifts during the same time interval from the d18O record, humification indices and the macrofossil analysis. The results were compared with other proxy data from the vicinity of the study area. The amplitude of the temperature change was similar to that in chironomid based reconstructions, showing c. 6.5 ±2.3 °C variability in July temperatures during the past 6.2 ka.
Resumo:
We present initial isotopic ratios of lead for Early Cretaceous (Barremian-Aptian) sections from Shatsky Rise (Pacific) and Gorgo a Cerbara (Italy). Our Pb isotopic data track an interval representing Oceanic Anoxic Event (OAE)-1a, which is characterized by quasi-global deposition of organic carbon-rich black shale. Pb isotopic compositions of sediments from Shatsky Rise decrease at the end of Barremian time, from radiogenic continental values to unradiogenic values, and subsequently remained less radiogenic until the end of early Aptian time. We explain the isotopic shift by a significant increase in supply rate of unradiogenic Pb, most likely due to massive volcanism. In contrast, the Pb isotopic compositions from the Italian section, which was situated at the western end of Tethys, are mostly identical to those of upper continental crust, showing no significant change in supply rate of unradiogenic Pb. The discrepancy between two sites is attributed to quiescent deep-submarine eruptions of Pacific large igneous provinces (LIPs) such as the Ontong Java Plateau (OJP), which severely limited dispersion of Pb-carrying particles out of the Pacific Ocean. Published Os isotopic data from the Italian section indicate two episodes of massive eruptions of OJP or contemporaneous Manihiki and Hikurangi plateaus starting from earliest Aptian time, slightly later than that indicated by the sedimentary Pb isotopic record from Shatsky Rise. Differences in isotopic variations between Pb and Os likely reflect differences in their chemical behaviors in the oceans, i.e., Pb isotopic compositions would have varied in response to local or regional changes in sediment provenances, whereas large-scale changes in Os inputs are required to explain variations in seawater Os isotopic compositions. Our Pb isotopic data, together with the published Os isotopic record, provide new evidence for the eruptive history of OJP together with contemporaneous Pacific plateaus and its environmental consequences, starting from end-Barremian time and extending through early Aptian time.
Resumo:
Modern seawater profiles of oxygen, nitrate deficit, and nitrogen isotopes reveal the spatial decoupling of summer monsoon-related productivity and denitrification maxima in the Arabian Sea (AS) and raise the possibility that winter monsoon and/or ventilation play a crucial role in modulating denitrification in the northeastern AS, both today and through the past. A new high-resolution 50-ka record of d15N from the Pakistan margin is compared to five other denitrification records distributed across the AS. This regional comparison unveils the persistence of east-west heterogeneities in denitrification intensity across millennial-scale climate shifts and throughout the Holocene. The oxygen minimum zone (OMZ) experienced east-west swings across Termination I and throughout the Holocene. Probable causes are (1) changes in ventilation due to millennial-scale variations in Antarctic Intermediate Water formation and (2) postglacial reorganization of intermediate circulation in the northeastern AS following sea level rise. Whereas denitrification in the world's OMZs, including the western AS, gradually declined following the deglacial maximum (10-9 ka BP), the northeastern AS record clearly witnesses increasing denitrification from about 8 ka BP. This would have impacted the global Holocene climate through sustained N2O production and marine nitrogen loss.
Resumo:
Submarine permafrost degradation has been invoked as a cause for recent observations of methane emissions from the seabed to the water column and atmosphere of the East Siberian shelf. Sediment drilled 52 m down from the sea ice in Buor Khaya Bay, central Laptev Sea revealed unfrozen sediment overlying ice-bonded permafrost. Methane concentrations in the overlying unfrozen sediment were low (mean 20 µM) but higher in the underlying ice-bonded submarine permafrost (mean 380 µM). In contrast, sulfate concentrations were substantially higher in the unfrozen sediment (mean 2.5 mM) than in the underlying submarine permafrost (mean 0.1 mM). Using deduced permafrost degradation rates, we calculate potential mean methane efflux from degrading permafrost of 120 mg/m**2 per year at this site. However, a drop of methane concentrations from 190 µM to 19 µM and a concomitant increase of methane d13C from -63 per mil to -35 per mil directly above the ice-bonded permafrost suggest that methane is effectively oxidized within the overlying unfrozen sediment before it reaches the water column. High rates of methane ebullition into the water column observed elsewhere are thus unlikely to have ice-bonded permafrost as their source.
Resumo:
Recent advances in the chronology and the palaeoclimatic understanding of Antarctic ice core records point towards a larger heterogeneity of latitudinal climate fluctuations than previously thought. Thus, realistic palaeoclimate reconstructions rely in the development of a tight array of well-constrained records with a dense latitudinal coverage. Climatic records from southernmost South America are critical cornerstones to link these Antarctic palaeoclimatic archives with their South American counterparts. At 54° S on the Island of Tierra del Fuego, Lago Fagnano is located in one of the most substantially and extensively glaciated regions of southernmost South America during the Late Pleistocene. This elongated lake is the largest (~110km long) and non-ice covered lake at high southern latitudes. A multi-proxy study of selected cores allows the characterisation of a Holocene sedimentary record. Detailed petrophysical, sedimentological and geochemical studies of a complete lacustrine laminated sequence reveal variations in major and trace elements, as well as organic content, suggesting high variability in environmental conditions. Comparison of these results with other regional records allows the identification of major known late Holocene climatic intervals and the proposal for a time for the onset of the Southern Westerlies in Tierra del Fuego. These results improve our understanding of the forcing mechanisms behind climate change in southernmost Patagonia.
Resumo:
The combination of multiple sediment sources and varying rates of sediment accumulation in the Celebes and Sulu seas have had significant impact on the processes of diagenesis, mineralization, and pore-fluid flow. Isotopic and mass-balance calculations help elucidate the various reactions taking place in these western Pacific basins, where ash alteration and basalt-seawater interactions are superimposed on the effects of sulfate oxidation of organic carbon and biogenic methane and of dolomitization of biogenic carbonates. Based on the shape of the calcium and magnesium depth profiles, two major reactive zones have been identified. The first is located near the zone of sulfate depletion and is characterized by carbonate recrystallization, dolomitization and ash alteration reactions at both Ocean Drilling Program Sites 767 and 768. The second reactive zone corresponds to the bottom of the sedimentary sequence and is characterized by alteration reactions in the basement (Site 767) and in the pyroclastic deposits beneath the sediment column (Site 768).
Resumo:
Under modern conditions only North Pacific Intermediate Water is formed in the northwest Pacific Ocean. This situation might have changed in the past. Recent studies with general circulation models indicate a switch to deep-water formation in the northwest Pacific during Heinrich Stadial 1 (17.5-15.0 ka) of the last glacial termination. Reconstructions of past ventilation changes based on paleoceanographic proxy records are still insufficient to test whether a deglacial mode of deep-water formation in the North Pacific Ocean existed. Here we present deglacial ventilation records based on radiocarbon-derived ventilation ages in combination with epibenthic stable carbon isotopes from the northwest Pacific including the Okhotsk Sea and Bering Sea, the two potential source regions for past North Pacific ventilation changes. Evidence for most rigorous ventilation of the intermediate-depth North Pacific occurred during Heinrich Stadial 1 and the Younger Dryas, simultaneous to significant reductions in Atlantic Meridional Overturning Circulation. Concurrent changes in d13C and ventilation ages point to the Okhotsk Sea as driver of millennial-scale changes in North Pacific Intermediate Water ventilation during the last deglaciation. Our records additionally indicate that changes in the d13C intermediate-water (700-1750 m water depth) signature and radiocarbon-derived ventilation ages are in antiphase to those of the deep North Pacific Ocean (>2100 m water depth) during the last glacial termination. Thus, intermediate- and deep-water masses of the northwest Pacific have a differing ventilation history during the last deglaciation.
Resumo:
The organic carbon isotopic record of the sapropels(S1 and S3-S10) and intercalated marl oozes has been determined in a 12-m piston core from the eastern Mediterranean. The d13C_organic values are systematically lighter (mean=-21.0±0.82 per mil) in all sapropels and heavier (mean=-18.8±1.07 per mil) in the marl oozes. These differences are not due to variable marine and terrestrial organic matter mixtures because all values are heavier than modern plankton in the Mediterranean, there is no relationship between the C_organic/N ratios and the isotopic values, and published information on the abundance and distribution of organic biomarkers shows that terrestrial material constitutes a minor fraction of the total organic matter. Temperature effects on isotope fractionation are also discounted because the change in d13C_organic values between glacial and interglacial horizons is in the opposite sense. Diagenesis, which can produce relatively small changes in the carbon isotopic composition of sedimentary organic matter under certain circumstances, is unlikely to have caused the observed differences because this mechanism would cause an enrichmet in 12C, implying that all values were even heavier originally, and there is no secular trend in the d13C_organic record. The observed differences in d13C_organic between the two lithologies are probably produced by changes in the isotopic composition and the concentration of dissolved CO2. First, freshwater flooding during the formation of the sapropels caused the isotopic composition of the dissolved inorganic carbon in the surface waters of the Mediterranean to become lighter because of the 13C deficiency in fresh waters. Hence photosynthesis would have produced isotopically lighter organic material. Second, changes in atmospheric pCO2 between glacial and interglacial periods, as shown by the Vostok ice core, caused marked changes in the concentration of free dissolved CO2 in the mixed layer; lower values during glacial maxima caused a smaller fractionation of the carbon isotopes by phytoplankton, whereas levels were less limiting during the interglacials. Concentrations of dissolved CO2 could also have been much higher during the deposition of the sapropels because of the supply of regenerated CO2 to the mixed layer by upwelling, and this could have further lightened the d13C_organic values in the sapropels themselves. Carbon isotope records may provide an alternative method for estimating atmospheric pCO2 levels over longer time periods than can be obtained from ice cores.
Resumo:
Theories explaining the origin of the abrupt, massive discharges of ice-rafted detritus (IRD) into the glacial North Atlantic (the Heinrich layers (HLs)) generally point to the Laurentide ice sheet as the sole source of these events, until it was found that the IRDs also originated from Icelandic and European ice sheets (Bond and Lotti, 1995, doi:10.1126/science.267.5200.1005; Snoeckx et al., 1999, doi:10.1016/S0025-3227(98)00168-6; Grousset et al., 2000, doi:10.1130/0091-7613(2000)28<123:WTNAHE>2.0.CO;2). This apparent contradiction must be reconciled as it raises fundamental questions about the mechanism(s) of HL origin. We have analyzed two ~12 cm thick HLs in an ultrahigh-resolution mode (1-2 century intervals) in a mid-Atlantic ridge piston core. The d18O record (N. pachyderma left coiling) reveals strong excursions induced by the melting of the icebergs; these excursions are associated with a strong decrease in the amount of planktic foraminafersand with a 3°C cooling of the surface waters. Counts of coarse detrital grains reveal that IRD are deposited according to a typical sequence (1) volcanic glass, (2) quartz and feldspars, (3) detrital carbonate, that implies a chronology in the melting of the differentpan-Atlantic ice sheets. Sr and Nd isotopic composition confirm that in both Heinrich layers H1 and H2, "precursor" IRD came from first Europe/Iceland, followed then by Laurentide-derived IRD. An internal cyclicity can be identified: during H1 and H2, about four to six major, abrupt discharges occurred roughly on a century timescale. The d13C and d15N records reveal that dominant inputs of continent-derived organic matter are associated with IRD within the HLs, hiding the plankton productivity signal.
Resumo:
Analysis of sediments deposited at different latitudes around the world during the Palaeocene-Eocene Thermal Maximum (PETM; ~56 Ma) have revealed a globally profound warming phase, regionally varying from 5-8 °C. Such records from Europe have not yet been obtained. We studied the variations in sea surface and continental mean annual air temperatures (SST and MAT, respectively) and the distribution patterns and stable carbon isotopes of higher plant derived n-alkanes in two proximal PETM sections (Fur and Store Bælt, Denmark) from the epicontinental North Sea Basin. A negative carbon isotope excursion (CIE) of 4-7 per mil was recorded in land plant derived n-alkanes, similar to what has been observed for other PETM sections. However, differences observed between the two proximal sites suggest that local factors, such as regional vegetation and precipitation patterns, also influenced the CIE. The presence of S-bound isorenieratene derivatives at the onset of the PETM and increased organic carbon contents points to a rapid shift in depositional environment; from well oxygenated to anoxic and sulfidic. These euxinic conditions are comparable with those during the PETM in the Arctic Ocean. SSTs inferred from TEX86 show relatively low temperatures followed by an increase of ~7 °C across the PETM. At the Fur section, a remarkably similar temperature record was obtained for MAT using the MBT'/CBT proxy. However, the MAT record of the Store Bælt section did not reveal this warming.