980 resultados para dating at Colby
Resumo:
Global climate changes during the Quaternary reveal much about broader evolutionary effects of environmental change. Detailed regional studies reveal how evolutionary lineages and novel communities and ecosystems, emerge through glacial bottlenecks or from refugia. There have been significant advances in benthic imaging and dating, particularly with respect to the movements of the British (Scottish) and Irish ice sheets and associated changes in sea level during and after the Last Glacial Maximum (LGM). Ireland has been isolated as an island for approximately twice as long as Britain with no evidence of any substantial, enduring land bridge between these islands after ca 15 kya. Recent biogeographical studies show that Britain's mammal community is akin to those of southern parts of Scandinavia, The Netherlands and Belgium, but the much lower mammal species richness of Ireland is unique and needs explanation. Here, we consider physiographic, archaeological, phylogeographical i.e. molecular genetic, and biological evidence comprising ecological, behavioural and morphological data, to review how mammal species recolonized western Europe after the LGM with emphasis on Britain and, in particular, Ireland. We focus on why these close neighbours had such different mammal fauna in the early Holocene, the stability of ecosystems after LGM subject to climate change and later species introductions.
There is general concordance of archaeological and molecular genetic evidence where data allow some insight into history after the LGM. Phylogeography reveals the process of recolonization, e.g. with respect to source of colonizers and anthropogenic influence, whilst archaeological data reveal timing more precisely through carbon dating and stratigraphy. More representative samples and improved calibration of the ‘molecular clock’ will lead to further insights with regards to the influence of successive glaciations. Species showing greatest morphological, behavioural and ecological divergence in Ireland in comparison to Britain and continental Europe, were also those which arrived in Ireland very early in the Holocene either with or without the assistance of people. Cold tolerant mammal species recolonized quickly after LGM but disappeared, potentially as a result of a short period of rapid warming. Other early arrivals were less cold tolerant and succumbed to the colder conditions during the Younger Dryas or shortly after the start of the Holocene (11.5 kya), or the area of suitable habitat was insufficient to sustain a viable population especially in larger species. Late Pleistocene mammals in Ireland were restricted to those able to colonize up to ca 15 kya, probably originating from adjacent areas of unglaciated Britain and land now below sea level, to the south and west (of Ireland). These few, early colonizers retain genetic diversity which dates from before the LGM. Late Pleistocene Ireland, therefore, had a much depleted complement of mammal species in comparison to Britain.
Mammal species, colonising predominantly from southeast and east Europe occupied west Europe only as far as Britain between ca 15 and 8 kya, were excluded from Ireland by the Irish and Celtic Seas. Smaller species in particular failed to colonise Ireland. Britain being isolated as an island from ca. 8 kya has similar species richness and composition to adjacent lowland areas of northwest continental Europe and its mammals almost all show strongest genetic affinity to populations in neighbouring continental Europe with a few retaining genotypes associated with earlier, western lineages.
The role of people in the deliberate introduction of mammal species and distinct genotypes is much more significant with regards to Ireland than Britain reflecting the larger species richness of the latter and its more enduring land link with continental Europe. The prime motivation of early people in moving mammals was likely to be resource driven but also potentially cultural; as elsewhere, people exploring uninhabited places introduced species for food and the materials they required to survive. It is possible that the process of introduction of mammals to Ireland commenced during the Mesolithic and accelerated with Neolithic people. Irish populations of these long established, introduced species show some unique genetic variation whilst retaining traces of their origins principally from Britain but in some cases, Scandinavia and Iberia. It is of particular interest that they may retain genetic forms now absent from their source populations. Further species introductions, during the Bronze and late Iron Ages, and Viking and Norman invasions, follow the same pattern but lack the time for genetic divergence from their source populations. Accidental introductions of commensal species show considerable genetic diversity based on numerous translocations along the eastern Atlantic coastline. More recent accidental and deliberate introductions are characterised by a lack of genetic diversity other than that explicable by more than one introduction.
The substantial advances in understanding the postglacial origins and genetic diversity of British and Irish mammals, the role of early people in species translocations, and determination of species that are more recently introduced, should inform policy decisions with regards to species and genetic conservation. Conservation should prioritise early, naturally recolonizing species and those brought in by early people reflecting their long association with these islands. These early arrivals in Britain and Ireland and associated islands show genetic diversity that may be of value in mitigating anthropogenic climate change across Europe. In contrast, more recent introductions are likely to disturb ecosystems greatly, lead to loss of diversity and should be controlled. This challenge is more severe in Ireland where the number and proportion of invasive species from the 19th century to the present has been greater than in Britain.
Resumo:
The 1950s excavations by Charles McBurney in the Haua Fteah, a large karstic cave on the coast of northeast Libya, revealed a deep sequence of human occupation. Most subsequent research on North African prehistory refers to his discoveries and interpretations, but the chronology of its archaeological and geological sequences has been based on very early age determinations. This paper reports on the initial results of a comprehensive multi-method dating program undertaken as part of new work at the site, involving radiocarbon dating of charcoal, land snails and marine shell, cryptotephra investigations, optically stimulated luminescence (OSL) dating of sediments, and electron spin resonance (ESR) dating of tooth enamel. The dating samples were collected from the newly exposed and cleaned faces of the upper 7.5m of the ~14.0m-deep McBurney trench, which contain six of the seven major cultural phases that he identified. Despite problems of sediment transport and reworking, using a Bayesian statistical model the new dating program establishes a robust framework for the five major lithostratigraphic units identified in the stratigraphic succession, and for the major cultural units. The age of two anatomically modern human mandibles found by McBurney in Layer XXXIII near the base of his Levalloiso-Mousterian phase can now be estimated to between 73 and 65ka (thousands of years ago) at the 95.4% confidence level, within Marine Isotope Stage (MIS) 4. McBurney's Layer XXV, associated with Upper Palaeolithic Dabban blade industries, has a clear stratigraphic relationship with Campanian Ignimbrite tephra. Microlithic Oranian technologies developed following the climax of the Last Glacial Maximum and the more microlithic Capsian in the Younger Dryas. Neolithic pottery and perhaps domestic livestock were used in the cave from the mid Holocene but there is no certain evidence for plant cultivation until the Graeco-Roman period. © 2013 Elsevier Ltd.
Resumo:
Far-travelled volcanic ashes (tephras) from Holocene eruptions in Alaska and the Pacific northwest have been traced to the easternmost extent of North America, providing the basis for a new high-precision geochronological framework throughout the continent through tephrochronology (the dating and correlation of tephra isochrons in sedimentary records). The reported isochrons are geochemically distinct, with seven correlated to documented sources in Alaska and the Cascades, including the Mazama ash from Oregon (w7600 years old) and the eastern lobe of the White River Ash from Alaska (~1150 years old). These findings mark the beginning of a tephrochronological framework of enhanced precision across North America, with applications in palaeoclimate, surface process and archaeological studies. The particle travel distances involved (up tow7000 km) also demonstrate the potential for continent-wide or trans-Atlantic socio-economic disruption from similar future eruptions.
Resumo:
Cross-group romantic relationships are an extremely intimate and often maligned form of intergroup contact. Yet, according to intergroup contact theory, these relationships have the potential to improve the intergroup attitudes of others via extended contact. This study combines the interpersonal and intergroup literatures to examine the outcomes associated with knowing a partner in a cross-group romantic relationship. Results suggest that cross-group romantic partners encounter greater disapproval toward their relationships than same-group partners and, as a result, their relationships are perceived more negatively. Nevertheless, extended contact with cross-group partners, controlling for participants' cross-group friendships and romantic relationships, predicts more positive attitudes toward cross-group dating and positive intergroup attitudes in general, mediated by perceived ingroup norms toward cross-group relationships.
Resumo:
In the deglacial sequence of the largest end moraine system of the Italian Alps, we focused on the latest culmination of the Last Glacial Maximum, before a sudden downwasting of the piedmontane lobe occupying the modern lake basin. We obtained a robust chronology for this culmination and for the subsequent deglacial history by cross-radiocarbon dating of a proximal fluvioglacial plain and of a deglacial continuous lake sedimentation. We used reworked dinocysts to locate sources of glacial abrasion and to mark the input of glacial meltwater until depletion. The palynological record from postglacial lake sediments provided the first vegetation chronosequence directly reacting to the early Lateglacial withdrawal so far documented in the Alps.
Glacier collapse occurred soon after 17.46 +/- 0.2 ka cal BP, which is, the Manerba advance culmination. Basin deglaciation of several overdeepened foreland piedmont lakes on southern and northern sides of the Alps appears to be synchronous at millennial scale and near-synchronous with large-scale glacial retreat at global scale. The pioneering succession shows a first afforestation step at a median modeled age of 64 years after deglaciation, while rapid tree growth lagged 7 centuries. Between 16.4 +/- 0.16 and 15.5 +/- 0.16 ka cal BP, a regressive phase interrupted forest growth marking a Lateglacial phase of continental-dry climate predating GI-1. This event, spanning the most advanced phases of North-Atlantic H1, is consistently radiocarbon-framed at three deglacial lake records so far investigated on the Italian side of the Alps. Relationships with the Gschnitz stadial from the Alpine record of Lateglacial advances are discussed
Resumo:
Despite the extensive geographical range of palaeolimnological studies designed to assess the extent of surface water acidification in the United Kingdom during the 1980s, little attention was paid to the status of surface waters in the North York Moors (NYM). In this paper, we present sediment core data from a moorland pool in the NYM that provide a record of air pollution contamination and surface water acidification. The 41-cm-long core was divided into three lithostratigraphic units. The lower two comprise peaty soils and peats, respectively, that date to between approximately 8080 and 6740 cal. BP. The uppermost unit comprises peaty lake muds dating from between approximately ad 1790 and the present day (ad 2006). The lower two units contain pollen dominated by forest taxa, whereas the uppermost unit contains pollen indicative of open landscape conditions similar to those of the present. Heavy metal, spheroidal carbonaceous particle, mineral magnetics and stable isotope analysis of the upper sediments show clear evidence of contamination by air pollutants derived from fossil-fuel combustion over the last c. 150years, and diatom analysis indicates that the naturally acidic pool became more acidic during the 20th century. We conclude that the exceptionally acidic surface waters of the pool at present (pH=c. 4.1) are the result of a long history of air pollution and not because of naturally acidic local conditions. We argue that the highly acidic surface waters elsewhere in the NYM are similarly acidified and that the lack of evidence of significant recovery from acidification, despite major reductions in the emissions of acidic gases that have taken place over the last c. 30years, indicates the continuing influence of pollutant sulphur stored in catchment peats, a legacy of over 150years of acid deposition.
Resumo:
Tischoferhohle and Pendling-Barenhohle near Kufstein, Tyrol, are among the only locations where remains of cave bear, Ursus spelaeus-group, were found in the western part of Austria. One sample from each site was radiocarbon-dated four decades ago to ca. 28 C-14 ka BP. Here we report that attempts to date additional samples from Pendling-Barenhohle have failed due to the lack of collagen, casting doubts on the validity of the original measurement. We also unsuccessfully tried to date flowstone clasts embedded in the bone-bearing sediment to provide maximum constraints on the age of this sediment. Ten cave bear bones from Tischoferhohle showing good collagen preservation were radiocarbon-dated to 31.1-39.9 C-14 ka BP, again pointing towards an age underestimation by the original radiocarbon-dated sample from this site. These new dates from Tischoferhohle are therefore currently the only reliable cave bear dates in western Austria and constrain the interval of cave occupation to 44.3-33.5 cal ka BP. We re-calibrate and re-evaluate dates of alpine cave bear samples in the context of available palaeoclimate information from the greater alpine region covering the transition into the Last Glacial Maximum, eventually leading to the demise of this megafauna.
Resumo:
The ~16-ka-long record of explosive eruptions from Shiveluch volcano (Kamchatka, NW Pacific) is refined using geochemical fingerprinting of tephra and radiocarbon ages. Volcanic glass from 77 prominent Holocene tephras and four Late Glacial tephra packages was analyzed by electron microprobe. Eruption ages were estimated using 113 radiocarbon dates for proximal tephra sequence. These radiocarbon dates were combined with 76 dates for regional Kamchatka marker tephra layers into a single Bayesian framework taking into account the stratigraphic ordering within and between the sites. As a result, we report ~1,700 high-quality glass analyses from Late Glacial–Holocene Shiveluch eruptions of known ages. These define the magmatic evolution of the volcano and provide a reference for correlations with distal fall deposits. Shiveluch tephras represent two major types of magmas, which have been feeding the volcano during the Late Glacial–Holocene time: Baidarny basaltic andesites and Young Shiveluch andesites. Baidarny tephras erupted mostly during the Late Glacial time (~16–12.8 ka BP) but persisted into the Holocene as subordinate admixture to the prevailing Young Shiveluch andesitic tephras (~12.7 ka BP–present). Baidarny basaltic andesite tephras have trachyandesite and trachydacite (SiO2 < 71.5 wt%) glasses. The Young Shiveluch andesite tephras have rhyolitic glasses (SiO2 > 71.5 wt%). Strongly calc-alkaline medium-K characteristics of Shiveluch volcanic glasses along with moderate Cl, CaO and low P2O5 contents permit reliable discrimination of Shiveluch tephras from the majority of other large Holocene tephras of Kamchatka. The Young Shiveluch glasses exhibit wave-like variations in SiO2 contents through time that may reflect alternating periods of high and low frequency/volume of magma supply to deep magma reservoirs beneath the volcano. The compositional variability of Shiveluch glass allows geochemical fingerprinting of individual Shiveluch tephra layers which along with age estimates facilitates their use as a dating tool in paleovolcanological, paleoseismological, paleoenvironmental and archeological studies. Electronic tables accompanying this work offer a tool for statistical correlation of unknown tephras with proximal Shiveluch units taking into account sectors of actual tephra dispersal, eruption size and expected age. Several examples illustrate the effectiveness of the new database. The data are used to assign a few previously enigmatic wide-spread tephras to particular Shiveluch eruptions. Our finding of Shiveluch tephras in sediment cores in the Bering Sea at a distance of ~600 km from the source permits re-assessment of the maximum dispersal distances for Shiveluch tephras and provides links between terrestrial and marine paleoenvironmental records.
Resumo:
Drawing on national and regional letter collections dating from the late seventeenth and early eighteenth centuries, this article explores women's experiences of the life of the mind through an analysis of their letter-writing. This study also highlights the shortcomings of the compartmentalised nature of scholarship on women's writing and intellectual lives and proposes the letter both as a beneficial historical source and methodological tool for research on women's mental worlds. By employing an inclusive definition of intellectual and creative life, and eschewing traditional benchmarks of achievement, this article contends that women took a full part in the cultures of knowledge of their time.
Resumo:
During the 1950s and 1960s, excavations by the Sarawak Museum at Niah Cave in northwest Borneo produced an enormous archive of records and artefacts, including in excess of 750,000 macro- and micro-vertebrate remains. The excellent state of preservation of the animal bone, dating from the Late Pleistocene (c. 40 kya) to as recently as c. 500 years ago had the potential to provide unparalleled zooarchaeological information about early hunter-gatherer resource procurement, temporal changes in subsistence patterning, and the impact of peoples on the local and regional environment in Island Southeast Asia. However, the coarse-grained methods of excavation employed during the original investigations and the sheer scale of the archaeological record and bone assemblages dissuaded many researchers from attempting to tackle the Niah archives. This paper outlines how important information on the nature of the archaeological record at Niah has now finally been extracted from the archive using a combination of zooarchaeological analysis and reference to the extensive archaeological records from the site. Copyright (C) 2009 John Wiley & Sons, Ltd.
Resumo:
Recent research in Europe, Africa, and Southeast Asia suggests that we can no longer assume a direct and exclusive link between anatomically modern humans and behavioral modernity (the 'human revolution'), and assume that the presence of either one implies the presence of the other: discussions of the emergence of cultural complexity have to proceed with greater scrutiny of the evidence on a site-by-site basis to establish secure associations between the archaeology present there and the hominins who created it. This paper presents one such case study: Niah Cave in Sarawak on the island of Borneo, famous for the discovery in 1958 in the West Mouth of the Great Cave of a modern human skull, the 'Deep Skull,' controversially associated with radiocarbon dates of ca. 40,000 years before the present. A new chronostratigraphy has been developed through a re-investigation of the lithostratigraphy left by the earlier excavations, AMS-dating using three different comparative pre-treatments including ABOX of charcoal, and U-series using the Diffusion-Absorption model applied to fragments of bones from the Deep Skull itself. Stratigraphic reasons for earlier uncertainties about the antiquity of the skull are examined, and it is shown not to be an `intrusive' artifact. It was probably excavated from fluvial-pond-desiccation deposits that accumulated episodically in a shallow basin immediately behind the cave entrance lip, in a climate that ranged from times of comparative aridity with complete desiccation, to episodes of greater surface wetness, changes attributed to regional climatic fluctuations. Vegetation outside the cave varied significantly over time, including wet lowland forest, montane forest, savannah, and grassland. The new dates and the lithostratigraphy relate the Deep Skull to evidence of episodes of human activity that range in date from ca. 46,000 to ca. 34,000 years ago. Initial investigations of sediment scorching, pollen, palynomorphs, phytoliths, plant macrofossils, and starch grains recovered from existing exposures, and of vertebrates from the current and the earlier excavations, suggest that human foraging during these times was marked by habitat-tailored hunting technologies, the collection and processing of toxic plants for consumption, and, perhaps, the use of fire at some forest-edges. The Niah evidence demonstrates the sophisticated nature of the subsistence behavior developed by modern humans to exploit the tropical environments that they encountered in Southeast Asia, including rainforest. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
The paper reports on the sixth season of fieldwork of the Cyrenaican Prehistory Project (CPP) undertaken in September 2012. As in the spring 2012 season, work focussed on the Haua Fteah cave and on studies of materials excavated in previous seasons, with no fieldwork undertaken elsewhere in the Gebel Akhdar. An important discovery, in a sounding excavated below the base of McBurney's 1955 Deep Sounding (Trench S), is of a rockfall or roof collapse conceivably dating to the cold climatic regime of Marine Isotope Stage (MIS) 6 (globally dated to c. 190-130 ka) but more likely the result of a seismic event within MIS 5 (globally dated to c. 130-80 ka). The sediments and associated molluscan fauna in Trench S and in Trench D, a trench being cut down the side of the Deep Sounding, indicate that this part of the cave was at least seasonally waterlogged during the accumulation, probably during MIS 5, of the -6.5 rn of sediment cut through by the Deep Sounding. Evidence for human fréquentation of the cave in this period is more or less visible depending on how close the trench area was to standing water as it fluctuated through time. Trench M, the trench being cut down the side of McBurney's Middle Trench, has now reached the depth of the latest Middle Stone Age or Middle Palaeolithic (Levalloiso-Mousterian) industries. The preliminary indications from its excavation are that the transition from the Levalloiso-Mousterian to the blade-based Upper Palaeolithic or Late Stone Age Dabban industry was complex and perhaps protracted, at a time when the climate was oscillating between warmstage stable environmental conditions and colder and more arid environments. The estimated age of the sediments, c. 50-40 ka, places these oscillations within the earlier part of MIS 3 (globally dated to 60-24 ka), when global climates experienced rapid fluctuations as part of an overall trend to increasing aridity and cold.
Resumo:
Extensive drilling of the Great Barrier Reef (GBR) in the 70s and 80s illuminated the main factors controlling reef growth during the Holocene. However, questions remain about: (1) the precise nature and timing of reef "turnon" or initiation, (2) whether consistent spatio-temporal patterns occur in the bio-sedimentologic response of the reef to Holocene sea-level rise then stability, and (3) how these factors are expressed in the context of the different evolutionary states (juvenile-mature-senile reefs). Combining 21 new C14-AMS and 146 existing recalibrated radiocarbon and U/Th ages, we investigated the detailed spatial and temporal variations in sedimentary facies and coralgal assemblages in fifteen cores across four reefs (Wreck, Fairfax, One Tree and Fitzroy) from the Southern GBR. Our newly defined facies and assemblages record distinct chronostratigraphic patterns in the cores, displaying both lateral zonation across the different reefs and shallowing upwards sequences, characterised by a transition from deep (Porites/faviids) to shallow (Acropora/Isopora) coral types. The revised reef accretion curves show a significant lag period, ranging from 0.7-2 ka, between flooding of the antecedent Pleistocene substrate and Holocene reef turn-on. This lag period and dominance of more environmentally tolerant early colonizers (e.g., domal Porites and faviids), suggests initial conditions that were unfavourable for coral growth. We contend that higher input of fine siliciclastic material from regional terrigenous sources, exposure to hydrodynamic forces and colonisation in deeper waters are the main factors influencing initially reduced growth and development. All four reefs record a time lag and we argue that the size and shape of the antecedent platform is most important in determining the duration between flooding and recolonisation of the Holocene reef. Finally, our study of Capricorn Bunker Group Holocene reefs suggests that the size and shape of the antecedent substrate has a greater impact on reef evolution and final evolutionary state (mature vs. senile), than substrate depth alone.
Resumo:
The most recent major eruption at Rabaul was one of the largest known events at this complex system, having a VEI rating of 6. The eruption generated widespread airfall pumice lapilli and ash deposits and ignimbrites of different types. The total volume of pyroclastic material produced in the eruption exceeded 11 km3 and led to a new phase of collapse within Rabaul Caldera. Initial 14C dating of the eruptive products yielded an age of about 1400 yrs BP, and the eruption became known as the "1400 BP" eruption. Previous analyses of the timing of the eruption have linked it to events in AD 536 and AD 639. However, we have re-evaluated the age of the eruption using the Bayesian wiggle-match radiocarbon dating method, and the eruption is now thought to
have occurred in the interval AD 667-699. The only significant equatorial eruptions recorded in both Greenland and Antarctic ice during this interval are at AD 681 and AD 684, dates that coincide with frost rings in bristlecone pines of western USA in the same years. Definitively linking the Rabaul eruption to this narrow age range will require identification of Rabaul tephra in the ice records. However, it is proposed that a new working hypothesis for the timing of the most recent major eruption at Rabaul is that it occurred in the interval AD 681-684.
Resumo:
The Greenland Ice Core Chronology 2005 (GICC05) and the radiocarbon calibration curve (IntCal) are the foremost time scales used in paleoclimatic and paleoenvironmental studies of the most recent 10 k.y. Due to varying and often insufficient dating resolution, opportunities to test the synchrony of these two influential chronologies are rare. Here we present evidence for a phase of major pine recruitment on Irish bogs at ca. 8160 yr B.P. Dendrochronological dating of subfossil trees from three sites reveals synchronicity in germination across the study area, indicative of a regional forcing. The concurrent colonization of pine on peatland is interpreted in terms of drier surface conditions and provides the first substantive proxy data in support of a significant hydroclimatic change in the north of Ireland accompanying the 8.2 ka climate cooling event. The date of pine establishment does not overlap with the GICC05 age range for the event, and possible lags between responses are unlikely to explain the full difference. In light of recent studies highlighting a possible offset in GICC05 and IntCal dates, the Irish pine record supports the notion of ice core dates being too early during the period of study. If the suggested discrepancy in timing is an artifact of chronological error, it is likely to have affected interpretations of previous proxy comparisons and alignments.