999 resultados para cumulus cell
Resumo:
The impact of indium tin oxide (ITO) layers over vertically aligned zinc oxide nanorods (ZnO NRs) has been investigated to consider ITO nanolayers as transparent conducting oxide electrodes (TCOE) for hierarchical heteronanostructure solar cell devices that have ZnO nanostructures as branches. ZnO/ITO core/shell nanostructures were prepared in two- steps using vapor-liquid-solid and evaporation processes, and further the structures were annealed at various temperatures. Transmission electron microscopic studies show that the as-grown ZnO/ITO structures consist of an amorphous ITO shell on single crystalline ZnO cores, whereas the structures annealed above 300 degrees C consist of a single crystalline ITO shell. ITO layer deposited ZnO NRs exhibit a small red-shift in ZnO near-band-edge emission as well as optical band gap. The electrical measurements carried out on single ZnO/ITO core/shell NR under dark and UV light showed excellent thermionic transport properties. From these investigations it is emphasized that ITO nanolayers could be used as TCO electrodes for prototype ZnO based hierarchical solar cell devices.
Resumo:
Cell-phone based imaging flow cytometry can be realized by flowing cells through the microfluidic devices, and capturing their images with an optically enhanced camera of the cell-phone. Throughput in flow cytometers is usually enhanced by increasing the flow rate of cells. However, maximum frame rate of camera system limits the achievable flow rate. Beyond this, the images become highly blurred due to motion-smear. We propose to address this issue with coded illumination, which enables recovery of high-fidelity images of cells far beyond their motion-blur limit. This paper presents simulation results of deblurring the synthetically generated cell/bead images under such coded illumination.
Resumo:
Productive infection of human endothelial cells with Japanese encephalitis virus (JEV), a single stranded RNA virus induces shedding of sHLA-E. We show here that sHLA-E that is released upon infection with this flavivirus can inhibit IL-2 and PMA mediated ERK 1/2 phosphorylation in two NK cell lines, Nishi and NKL. Virus infected or IFN-gamma treated cell culture supernatants containing sHLA-E were found to partially inhibit IL-2 mediated induction of CD25 molecules on NKL cells. It was also found that sHLA-E could inhibit IL-2 induced H-3]-thymidine incorporation suggesting that, similar to cell surface expressed HLA-E, sHLA-E could also inhibit NK cell responses. Hence JEV-induced shedding of sHLA-E needs further investigation to better understand immune responses in JEV infections since it may have a role in viral evasion of NK cell responses. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
FtsE is one of the earliest cell division proteins that assembles along with FtsX at the mid-cell site during cell division in Escherichia coli. Both these proteins are highly conserved across diverse bacterial genera and are predicted to constitute an ABC transporter type complex, in which FtsE is predicted to bind ATP and hydrolyse it, and FtsX is predicted to be an integral membrane protein. We had earlier reported that the MtFtsE of the human pathogen, Mycobacterium tuberculosis, binds ATP and interacts with MtFtsX on the cell membrane of M. tuberculosis and E. coli. In this study, we demonstrate that MtFtsE is an ATPase, the active form of which is a dimer, wherein the participating monomers are held together by non-covalent interactions, with the Cys84 of each monomer present at the dimer interface. Under oxidising environment, the dimer gets stabilised by the formation of Cys84-Cys84 disulphide bond. While the recombinant MtFtsE forms a dimer on the membrane of E. coli, the native MtFtsE seems to be in a different conformation in the M. tuberculosis membrane. Although disulphide bridges were not observed on the cytoplasmic side (reducing environment) of the membrane, the two participating monomers could be isolated as dimers held together by non-covalent interactions. Taken together, these findings show that MtFtsE is an ATPase in the non-covalent dimer form, with the Cys84 of each monomer present in the reduced form at the dimer interface, without participating in the dimerisation or the catalytic activity of the protein.
Resumo:
In order to study cell electroporation in situ, polymer devices have been fabricated from poly-dimethyl siloxane with transparent indium tin oxide parallel plate electrodes in horizontal geometry. This geometry with cells located on a single focal plane at the interface of the bottom electrode allows a longer observation time in both transmitted bright-field and reflected fluorescence microscopy modes. Using propidium iodide (PI) as a marker dye, the number of electroporated cells in a typical culture volume of 10-100 mu l was quantified in situ as a function of applied voltage from 10 to 90 V in a series of 2-ms pulses across 0.5-mm electrode spacing. The electric field at the interface and device current was calculated using a model that takes into account bulk screening of the transient pulse. The voltage dependence of the number of electroporated cells could be explained using a stochastic model for the electroporation kinetics, and the free energy for pore formation was found to be kT at room temperature. With this device, the optimum electroporation conditions can be quickly determined by monitoring the uptake of PI marker dye in situ under the application of millisecond voltage pulses. The electroporation efficiency was also quantified using an ex situ fluorescence-assisted cell sorter, and the morphology of cultured cells was evaluated after the pulsing experiment. Importantly, the efficacy of the developed device was tested independently using two cell lines (C2C12 mouse myoblast cells and yeast cells) as well as in three different electroporation buffers (phosphate buffer saline, electroporation buffer and 10 % glycerol).
Resumo:
Toward designing the next generation of resorbable biomaterials for orthopedic applications, we studied poly(epsilon-caprolactone) (PCL) composites containing graphene. The role, if any, of the functionalization of graphene on mechanical properties, stem cell response, and biofilm formation was systematically evaluated. PCL composites of graphene oxide (GO), reduced GO (RGO), and amine-functionalized GO (AGO) were prepared at different filler contents (1%, 3%, and 5%). Although the addition of the nanoparticles to PCL markedly increased the storage modulus, this increase was largest for GO followed by AGO and RGO. In vitro cell studies revealed that the AGO and GO particles significantly increased human mesenchymal stem cell proliferation. AGO was most effective in augmenting stem cell osteogenesis leading to mineralization. Bacterial studies revealed that interaction with functionalized GO induced bacterial cell death because of membrane damage, which was further accentuated by amine groups in AGO. As a result, AGO composites were best at inhibiting biofilm formation. The synergistic effect of oxygen containing functional groups and amine groups on AGO imparts the optimal combination of improved modulus, favorable stem cell response, and biofilm inhibition in AGO-reinforced composites desired for orthopedic applications. This work elucidates the importance of chemical functionalization of graphene in polymer composites for biomedical applications.
Resumo:
The local fast-spiking interneurons (FSINs) are considered to be crucial for the generation, maintenance, and modulation of neuronal network oscillations especially in the gamma frequency band. Gamma frequency oscillations have been associated with different aspects of behavior. But the prolonged effects of gamma frequency synaptic activity on the FSINs remain elusive. Using whole cell current clamp patch recordings, we observed a sustained decrease of intrinsic excitability in the FSINs of the dentate gyrus (DG) following repetitive stimulations of the mossy fibers at 30 Hz (gamma bursts). Surprisingly, the granule cells (GCs) did not express intrinsic plastic changes upon similar synaptic excitation of their apical dendritic inputs. Interestingly, pairing the gamma bursts with membrane hyperpolarization accentuated the plasticity in FSINs following the induction protocol, while the plasticity attenuated following gamma bursts paired with membrane depolarization. Paired pulse ratio measurement of the synaptic responses did not show significant changes during the experiments. However, the induction protocols were accompanied with postsynaptic calcium rise in FSINs. Interestingly, the maximum and the minimum increase occurred during gamma bursts with membrane hyperpolarization and depolarization respectively. Including a selective blocker of calcium-permeable AMPA receptors (CP-AMPARs) in the bath; significantly attenuated the calcium rise and blocked the membrane potential dependence of the calcium rise in the FSINs, suggesting their involvement in the observed phenomenon. Chelation of intracellular calcium, blocking HCN channel conductance or blocking CP-AMPARs during the experiment forbade the long lasting expression of the plasticity. Simultaneous dual patch recordings from FSINs and synaptically connected putative GCs confirmed the decreased inhibition in the GCs accompanying the decreased intrinsic excitability in the FSINs. Experimentally constrained network simulations using NEURON predicted increased spiking in the GC owing to decreased input resistance in the FSIN. We hypothesize that the selective plasticity in the FSINs induced by local network activity may serve to increase information throughput into the downstream hippocampal subfields besides providing neuroprotection to the FSINs. (c) 2014 Wiley Periodicals, Inc.
Resumo:
5,6-Bis(benzylideneamino)-2-mercaptopyrimidin-4-ol (SCR7) is a new anti cancer molecule having capability to selectively inhibit non-homologous end joining (NHEJ), one of the DNA double strand break (DSB) repair pathways inside the cells. In spite of the promising potential as an anticancer agent, hydrophobicity of SCR7 decreases its bioavailability. Herein the entrapment of SCR7 in Pluronic copolymer is reported. The size of the aggregates was determined by transmission electron microscopy (TEM) and dynamic light scattering (DLS) which yields an average diameter of 23 nm. SCR7 encapsulated micelles (ES) were also characterized by small-angle neutron scattering (SANS). Evaluation of its biological properties by using a variety of techniques, including Trypan blue, MTT and Live-dead cell assays, reveal that encapsulated SCR7 can induce cytotoxicity in cancer cell lines, being more effective in breast cancer cell line. Encapsulated SCR7 treatment resulted in accumulation of DNA breaks within the cells, resulting in cell cycle arrest at G1 phase and activation of apoptosis. More importantly, we found approximate to 5 fold increase in cell death, when encapsulated SCR7 was used in comparison with SCR7 alone.
Resumo:
Among the multiple modulatory physical cues explored to regulate cellular processes, the potential of magneto-responsive substrates in magnetic field stimulated stem cell differentiation is still unperceived. In this regard, the present work demonstrates how an external magnetic field can be applied to direct stem cell differentiation towards osteogenic commitment. A new culture methodology involving periodic delivery of 100 mT static magnetic field (SMF) in combination with HA-Fe3O4 magnetic substrates possessing a varying degree of substrate magnetization was designed for the study. The results demonstrate that an appropriate combination of weakly ferromagnetic substrates and SMF exposure enhanced cell viability, DNA synthesis and caused an early switchover to osteogenic lineage as supported by Runx2 immunocytochemistry and ALP expression. However, the mRNA expression profile of early osteogenic markers (Runx2, ALP, Col IA) was comparable despite varying substrate magnetic properties (diamagnetic to ferromagnetic). On the contrary, a remarkable upregulation of late bone development markers (OCN and OPN) was explicitly detected on weak and strongly ferromagnetic substrates. Furthermore, SMF induced matrix mineralization with elevated calcium deposition on similar substrates, even in the absence of osteogenic supplements. More specifically, the role of SMF in increasing intracellular calcium levels and in inducing cell cycle arrest at G0/G1 phase was elucidated as the major molecular event triggering osteogenic differentiation. Taken together, the above results demonstrate the competence of magnetic stimuli in combination with magneto-responsive biomaterials as a potential strategy for stem cell based bone tissue engineering.
Resumo:
Presently Li/MnO2 is one of the widely used primary battery for a variety of applications. As the global resources for Na are plentiful in relation to those for Li, Na/MnO2 primary battery is expected to be an economical, viable alternate to Li/MnO2 system. But marginal inferior properties of Na/MnO2, which arise due to the differences in properties between Li and Na, are inevitable. In the present work, Na/MnO2 and Li/MnO2 laboratory scale primary cells in non-aquebus electrolytes are assembled and their electrochemical properties are studied in similar experimental conditions. The MnO2 used for these studies is prepared from KMnO4 and it is in amorphous state. The discharge behavior of Na/MnO2 cell is similar to that of Li/MnO2 cell, but with nominal voltage less by about 0.35 V, as expected. The specific capacity of amorphous MnO2 is 300 mAh g(-1) in both Na/MnO2 and Li/MnO2 cells. On heating the as prepared amorphous MnO2 at temperature range 300-800 degrees C, it converts to crystalline ct-MnO2. The capacity of crystalline MnO2 is significantly less than the amorphous MnO2. The results suggest that Na/MnO2 is a viable, economical alternate to Li/MnO2 primary cell. (C) The Author(s) 2015. Published by ECS. All rights reserved.
Resumo:
In this work, we report a system-level integration of portable microscopy and microfluidics for the realization of optofluidic imaging flow analyzer with a throughput of 450 cells/s. With the use of a cellphone augmented with off-the-shelf optical components and custom designed microfluidics, we demonstrate a portable optofluidic imaging flow analyzer. A multiple microfluidic channel geometry was employed to demonstrate the enhancement of throughput in the context of low frame-rate imaging systems. Using the cell-phone based digital imaging flow analyzer, we have imaged yeast cells present in a suspension. By digitally processing the recorded videos of the flow stream on the cellphone, we demonstrated an automated cell viability assessment of the yeast cell population. In addition, we also demonstrate the suitability of the system for blood cell counting. (C) 2015 AIP Publishing LLC.
Resumo:
The leaf surface usually stays flat, maintained by coordinated growth. Growth perturbation can introduce overall surface curvature, which can be negative, giving a saddle-shaped leaf, or positive, giving a cup-like leaf. Little is known about the molecular mechanisms that underlie leaf flatness, primarily because only a few mutants with altered surface curvature have been isolated and studied. Characterization of mutants of the CINCINNATA-like TCP genes in Antirrhinum and Arabidopsis have revealed that their products help maintain flatness by balancing the pattern of cell proliferation and surface expansion between the margin and the central zone during leaf morphogenesis. On the other hand, deletion of two homologous PEAPOD genes causes cup-shaped leaves in Arabidopsis due to excess division of dispersed meristemoid cells. Here, we report the isolation and characterization of an Arabidopsis mutant, tarani (tni), with enlarged, cup-shaped leaves. Morphometric analyses showed that the positive curvature of the tni leaf is linked to excess growth at the centre compared to the margin. By monitoring the dynamic pattern of CYCLIN D3;2 expression, we show that the shape of the primary arrest front is strongly convex in growing tni leaves, leading to excess mitotic expansion synchronized with excess cell proliferation at the centre. Reduction of cell proliferation and of endogenous gibberellic acid levels rescued the tni phenotype. Genetic interactions demonstrated that TNI maintains leaf flatness independent of TCPs and PEAPODs.
Resumo:
A newly designed fluorescent aluminum(III) complex (L'-Al; 2) of a structurally characterized non-fluorescent rhodamine Schiff base (L) has been isolated in pure form and characterized using spectroscopic and physico-chemical methods with theoretical density functional theory (DFT) support. On addition of Al(III) ions to a solution of L in HEPES buffer (1 mM, pH 7.4; EtOH-water, 1 : 3 v/v) at 25 degrees C, the systematic increase in chelation-enhanced fluorescence (CHEF) enables the detection of Al(III) ions as low as 60 nM with high selectivity, unaffected by the presence of competitive ions. Interestingly, the Al(III) complex (L'-Al; 2) is specifically able to detect fluoride ions by quenching the fluorescence in the presence of large amounts of other anions in the HEPES buffer (1 mM, pH 7.4) at 25 degrees C. On the basis of our experimental and theoretical findings, the addition of Al3+ ions to a solution of L helps to generate a new fluorescence peak at 590 nm, due to the selective binding of Al3+ ions with L in a 1 : 1 ratio with a binding constant (K) of 8.13 x 10(4) M-1. The Schiff base L shows no cytotoxic effect, and it can therefore be employed for determining the intracellular concentration of Al3+ and F-ions by 2 in living cells using fluorescence microscopy.
Resumo:
DNA intercalators are one of the interesting groups in cancer chemotherapy. The development of novel anticancer small molecule has gained remarkable interest over the last decade. In this study, we synthesized and investigated the ability of a tetracyclic-condensed quinoline compound, 4-butylaminopyrimido4',5':4,5]thieno(2,3-b)quinoline (BPTQ), to interact with double-stranded DNA and inhibit cancer cell proliferation. Circular dichroism, topological studies, molecular docking, absorbance, and fluorescence spectral titrations were employed to study the interaction of BPTQ with DNA. Cytotoxicity was studied by performing 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and lactate dehydrogenase (LDH) assay. Further, cell cycle analysis by flow cytometry, annexin V staining, mitochondrial membrane potential assay, DNA fragmentation, and western blot analysis were used to elucidate the mechanism of action of BPTQ at the cellular level. Spectral, topological, and docking studies confirmed that BPTQ is a typical intercalator of DNA. BPTQ induces dose-dependent inhibitory effect on the proliferation of cancer cells by arresting cells at S and G2/M phase. Further, BPTQ activates the mitochondria-mediated apoptosis pathway, as explicated by a decrease in mitochondrial membrane potential, increase in the Bax:Bcl-2 ratio, and activation of caspases. These results confirmed that BPTQ is a DNA intercalative anticancer molecule, which could aid in the development of future cancer therapeutic agents.