923 resultados para copolymer (PVDF-TrFE)
Resumo:
Phase behavior, thermal, theological and mechanical properties plus morphology have been studied for a binary polymer blend. The blend is phenolphthalein polyethersulfone (PES-C) with a thermotropic liquid crystalline polymer (LCP), a condensation copolymer of p-hydroxybenzoic acid with ethylene terephthalate (PHB-PET). It was found that these two polymers form optically isotropic and homogeneous blends by means of a solvent casting method. The homogeneous blends undergo phase separation during heat treatment. However, melt mixed PES-C/PHB-PET blends were heterogeneous based upon DSC and DMA analysis and SEM examination. Addition of LCP in PES-C resulted in a marked reduction of melt viscosity and thus improved processability. Compared to pure PES-C, the charpy impact strength of the blend containing 2.5% LCP increased 2.5 times. Synergistic effects were also observed for the mechanical properties of blends containing < 10% LCP. Particulates, ribbons, and fibrils were found to be the typical morphological units of PHB-PET in the PES-C matrix, which depended upon the concentration of LCP and the processing conditions.
Resumo:
New copolyether sulfones containing 2,6-bis(p-oxo-benzylidene)cyclohexanone and 2,6-bis(o,p-dioxo-benzylidene)cyclohexanone moieties were prepared in the conventional literature manner by condensing the dipotassium salts of 2,6-bis(p-hydroxybenzylidene)cyclohexanone (III), 2,6-bis(o,p-dihydroxybenzylidene)-cyclohexanone (V), and 2,2-bis(p-hydroxyphenyl)propane (Bisphenol A, VII) with 4,4'-dichlorodiphenyl sulfone (VI), or by condensing the dipotassium salts of III and VII with a new benzylidene cyclohexanone sulfone macromer (X). Finally, the polycondensation reaction of sulfonyl bis(p-benzaldehydeoxo-p-phenylene) (IX) with cyclohexanone leads to an unsaturated copolymer (XVI). The resulting copolyether sulfones were confirmed by IR, H-1-NMR, viscometry, elemental analysis, thermooptical (TOA), x-ray, and thermogravimetric (TGA) measurements.
Resumo:
The melting behavior of poly(methyl methacrylate)-grafted nascent polyethylene reactor powder by plasma irradiation was studied by differential scanning calorimetry (DSC). The grafting yield ranged hom 11 to 190%. Grafting was found to lower both melting point and heat of fusion during the first run of DSC determination. The heat of fusion was used to calculate the apparent grafting yield of the samples. There was little strain induced by plasma-irradiated grafting on the surface of the polyethylene crystals. A method to determine the covalent grafting yield in the graft copolymer systems was developed. (C) 1995 John Wiley & Sons, Inc.
Resumo:
A comb polymer(CP350) with oligo-oxyethlene side chains was prepared from methyl vinyl ether/maleic anhydride copolymer. Homogeneous amorphous polymer electrolyte were made from the comb polymer and LiCF3SO3 by solvent casting from acetone, and their conductivities were measured as a function of temperature and salt concentration. Maximum conductivity close I to 5.08 x 10(-5)S/cm was achieved at room temperature at [Li]/[EO] ratio of about 0.12.
Resumo:
This paper reports a study of compatibilization and the mechanism of compatibilization of polypropylene (PP)/thermoplastic polyurethane (TPU) blends with maleated polypropylene (PP-MA) and its graft copolymer with polyethylene oxide (PEO), (PP-MA)-g-PEO.
Resumo:
In order to characterize the interface in polymer blends, a new method is suggested, in which the interface is exposed by selectively dissolving in solvent. By means of X-ray photoelectron spectrometry, we studied the molecular state in the interfacial ar
Resumo:
The compatibilization of incompatible polypropylene (PP)/poly(ethylene oxide) (PEO) blends was studied. The experimental results showed that the graft copolymer [(PP-MA)-g-PEO] of maleated PP (PP-MA) and mono-hydroxyl PEO (PEO-OH) was a good compatibilize
Resumo:
A new graft copolymer (PP-MA)-g-PEO was synthesized by means of the chemical reaction between maleated polypropylene (PP-MA) and mono hydroxyl poly(ethylene oxide) (PEO-OH). The effect of reaction conditions on the degree of grafting of PEO-OH was studied
Resumo:
For perhaps the first time, the dynamics of liquid-liquid phase separation was studied by time-resolved mechanical spectrometry in order to establish the relationship between blends' properties and the phase structures during spinodal decomposition (SD). The selected system was chlorinated polyethylene (CPE)/ethylene-vinyl acetate copolymer (EVA). It was found that in the early and intermediate stage of SD, the storage modulus (G') and the loss modulus (G'') increase with time after the initiation of the isothermal phase separation; in the later stage, G' and G'' decrease as phase separation proceeds. An entanglement fluctuation model was presented to manifest this phenomenon; it was found that the rheological behavior agrees well with the expections of the model in the early stage. For the later stage, the reduction of G' and G'' can be attributed to the increment of phase-domain size. (C) 1993 John Wiley & Sons, Inc.
Resumo:
The prediction, based on unsteady diffusion kinetics, of the enhancement of reactivity and incorporation of 1-hexadecene in its copolymerization with propylene on adding a small amount of ethylene (increase from 5,2 mol-% to 10,8 mol-% when 2% of ethylene was added, and to 16,1 mol-% when 5% was added) was verified in the terpolymerization of propylene/1-hexadecene/ethylene on a commercial Solvay-type delta-TiCl3 catalyst. The catalyst efficiency was thus also increased. These augmentations originate from the increase in diffusion coefficient of 1-hexadecene at the catalyst surface when the PP crystallinity decreases on introduction of ethylene. Calculation based on unsteady diffusion kinetics showed that the order of diffusion coefficients ethylene > propylene > 1-hexadecene is reversed as the monomer concentration increases when the monomers are not at their equilibrium concentration. Sequence distribution as determined by means of C-13 NMR revealed a tendency of blocky structure rather than a Bernoullian one. The terpolymer compositions obtained by means of an IR method developed in this work conform rather well with the NMR results. Results in this work not only support the unsteady diffusion kinetics but also provide a new route to prepare olefinic copolymer rubbers with heterogeneous titanium catalysts.
Resumo:
The miscibility of poly(hydroxyether of bisphenol A) (phenoxy) with a series of poly(ethylene oxide-co-propylene oxide) (EPO) has been studied. It was found that the critical copolymer composition for achieving miscibility with phenoxy around 60-degrees-C is about 22 mol % ethylene oxide (EO). Some blends undergo phase separation at elevated temperatures, but there is no maximum in the miscibility window. The mean-field approach has been used to describe this homopolymer/copolymer system. From the miscibility maps and the melting-point depression of the crystallizable component in the blends, the binary interaction energy densities, B(ij), have been calculated for all three pairs. The miscibility of phenoxy with EPO is considered to be caused mainly by the intermolecular hydrogen-bonding interactions between the hydroxyl groups of phenoxy and the ether oxygens of the EO units in the copolymers, while the intramolecular repulsion between EO and propylene oxide units in the copolymers contributes relatively little to the miscibility.
Resumo:
In this work the radiation-induced structural changes in PVDF were studied using XPS. It was found that for PVDF irradiated at 150-degrees-C, double bonds were formed mainly through the further dehydrofluorination of crosslinked and/or branched molecules, whereas for samples irradiated at 20-degrees-C the dehydrofluorination of macromolecular radicals to form stable polyene radicals is the main source of unsaturated structures.
Resumo:
This paper describes the roles of silica (SiO2), the butoxy ligand (-OBu) and ethyl benzoate (EB) on ethylene/1-butene copolymerization with MgCl2/SiO2-supported titanium catalysts. The distribution of SiO2 and of the elements Mg and Ti was observed by means of an energy-dispersed X-ray microanalyzer on a scanning electron microscope (SEM). An inversed Si/Mg ratio results, at invariant Ti/Mg ratio and -OBu content, in higher catalyst efficiency and higher comonomer incorporation, with a correspondingly decreased crystallinity of the copolymers. Thus, the inert carrier SiO2 favors copolymerizability, as seen from the values of the reactivity ratios. The copolymer compositional distribution is also affected by the SiO2 content, as seen from the DSC curves of the copolymers. As to the copolymer morphology, addition of SiO2 makes the copolymer particles larger and more uniform.
Resumo:
利用XPS、红外光谱、凝胶含量测试及辐照失重等方法,研究了聚偏氟乙烯(PVDF)的辐射效应及其温度的影响。结果表明,在低剂量范围内,提高辐照温度,明显地有利于辐射交联反应。在高温下,PVDF中不饱和双键的形成主要是通过交联或支化结构的进一步脱HF反应实现。而室温条件下,含氟自由基脱HF形成稳定的共轭多烯,也是导致双键形成的重要原因。
Resumo:
Unsteady diffusion kinetic, recently advanced by this laboratory, is applied to the examination of some polymerization and molecular chain structure problems. Hitherto deemed "anomalous" phenomena, such as the faster rate of copolymerization of ethylene/alpha-olefin than the homopolymerization of ethylene and the enrichment in the incorporation of a higher alpha-olefin in its copolymerization with ethylene by a lower alpha-olefin, are reasonably explained by unsteady diffusion of monomers. Molecular chain structure of copolymers, such as compositional heterogeneity and its dependence on comonomer incorporation originates from the difference in diffusion coefficients of the monomers. A copolymer composition equation taking into consideration the unsteady diffusion was developed. In cases where simulated curves were compared with experimental curves, good agreements were found.