935 resultados para conservation and use
Resumo:
"Sponsors: The Wildlife Society's Working Group on Sustainable Use of Ecosystem Resources ... [et al.]."
Resumo:
"February 1988."
Resumo:
Issued Jan. l, 1953- as U.S. Dept. of Agriculture. Agriculture handbook, no. 49, 79, 113, 192, 242, 281, 317, etc.
Resumo:
"June 15; July 19; and September 29, 1994"--Pt. 2.
Resumo:
Mode of access: Internet.
Resumo:
Hearings held in various cities, Apr. 8-Aug. 25, 1978.
Resumo:
Conservation planning is the process of locating and designing conservation areas to promote the persistence of biodiversity in situ. To do this, conservation areas must be able to mitigate at least some of the proximate threats to biodiversity. Information on threatening processes and the relative vulnerability of areas and natural features to these processes is therefore crucial for effective conservation planning. However, measuring and incorporating vulnerability into conservation planning have been problematic. We develop a conceptual framework of the role of vulnerability assessments in conservation planning and propose a definition of vulnerability that incorporates three dimensions: exposure, intensity, and impact. We review and categorize methods for assessing the vulnerability of areas and the features they contain and identify the relative strengths and weaknesses of each broad approach, Our review highlights the need for further development and evaluation of approaches to assess vulnerability and for comparisons of their relative effectiveness.
Resumo:
The history of political and economic inequality in forest villages can shape how and why resource use conflicts arise during the evolution of national parks management. In the Philippine uplands, indigenous peoples and migrant settlers co-exist, compete over land and forest resources, and shape how managers preserve forests through national parks. This article examines how migrants have claimed lands and changed production and exchange relations among the indigenous Tagbanua to build on and benefit from otherwise coercive park management on Palawan Island, the Philippines. Migrant control over productive resources has influenced who, within each group, could sustain agriculture in the face of the state's dominant conservation narrative - valorizing migrant paddy rice and criminalizing Tagbanua swiddens. Upon settling, migrant farmers used new political and economic strengths to tap into provincial political networks in order to be hired at a national park. As a result, they were able to steer management to support paddy rice at the expense of swidden cultivation. While state conservation policy shapes how national parks impact upon local resource access and use, older political economic inequalities in forest villages build on such policies to influence how management affects the livelihoods of poor households.
Resumo:
An expanding human population and associated demands for goods and services continues to exert an increasing pressure on ecological systems. Although the rate of expansion of agricultural lands has slowed since 1960, rapid deforestation still occurs in many tropical countries, including Colombia. However, the location and extent of deforestation and associated ecological impacts within tropical countries is often not well known. The primary aim of this study was to obtain an understanding of the spatial patterns of forest conversion for agricultural land uses in Colombia. We modeled native forest conversion in Colombia at regional and national-levels using logistic regression and classification trees. We investigated the impact of ignoring the regional variability of model parameters, and identified biophysical and socioeconomic factors that best explain the current spatial pattern and inter-regional variation in forest cover. We validated our predictions for the Amazon region using MODIS satellite imagery. The regional-level classification tree that accounted for regional heterogeneity had the greatest discrimination ability. Factors related to accessibility (distance to roads and towns) were related to the presence of forest cover, although this relationship varied regionally. In order to identify areas with a high risk of deforestation, we used predictions from the best model, refined by areas with rural population growth rates of > 2%. We ranked forest ecosystem types in terms of levels of threat of conversion. Our results provide useful inputs to planning for biodiversity conservation in Colombia, by identifying areas and ecosystem types that are vulnerable to deforestation. Several of the predicted deforestation hotspots coincide with areas that are outstanding in terms of biodiversity value.
Resumo:
Data on the occurrence of species are widely used to inform the design of reserve networks. These data contain commission errors (when a species is mistakenly thought to be present) and omission errors (when a species is mistakenly thought to be absent), and the rates of the two types of error are inversely related. Point locality data can minimize commission errors, but those obtained from museum collections are generally sparse, suffer from substantial spatial bias and contain large omission errors. Geographic ranges generate large commission errors because they assume homogenous species distributions. Predicted distribution data make explicit inferences on species occurrence and their commission and omission errors depend on model structure, on the omission of variables that determine species distribution and on data resolution. Omission errors lead to identifying networks of areas for conservation action that are smaller than required and centred on known species occurrences, thus affecting the comprehensiveness, representativeness and efficiency of selected areas. Commission errors lead to selecting areas not relevant to conservation, thus affecting the representativeness and adequacy of reserve networks. Conservation plans should include an estimation of commission and omission errors in underlying species data and explicitly use this information to influence conservation planning outcomes.
Resumo:
Movement and habitat use patterns are fundamental components of the behaviors of mobile animals and help determine the scale and types of interactions they have with their environments. These behaviors are especially important to quantify for top predators because they can have strong effects on lower trophic levels as well as the wider ecosystem. Many studies of top predator movement and habitat use focus on general population level trends, which may overlook important intra-population variation in behaviors that now appear to be common. In an effort to better understand the prevalence of intra-population variation in top predator movement behaviors and the potential effects of such variation on ecosystem dynamics, we examined the movement and habitat use patterns of a population of adult American alligators (Alligator mississippiensis) in a subtropical estuary for nearly four years. We found that alligators exhibited divergent behaviors with respect to activity ranges, movement rates, and habitat use, and that individualized behaviors were stable over multiple years. We also found that the variations across the three behavioral metrics were correlated such that consistent behavioral types emerged, specifically more exploratory individuals and more sedentary individuals. Our study demonstrates that top predator populations can be characterized by high degrees of intra-population variation in terms of movement and habitat use behaviors that could lead to individuals filling different ecological roles in the same ecosystem. By extension, one-size-fits-all ecosystem and species-specific conservation and management strategies that do not account for potential intra-population variation in top predator behaviors may not produce the desired outcomes in all cases.
Resumo:
Habitat loss, fragmentation, and degradation threaten the World’s ecosystems and species. These, and other threats, will likely be exacerbated by climate change. Due to a limited budget for conservation, we are forced to prioritize a few areas over others. These places are selected based on their uniqueness and vulnerability. One of the most famous examples is the biodiversity hotspots: areas where large quantities of endemic species meet alarming rates of habitat loss. Most of these places are in the tropics, where species have smaller ranges, diversity is higher, and ecosystems are most threatened.
Species distributions are useful to understand ecological theory and evaluate extinction risk. Small-ranged species, or those endemic to one place, are more vulnerable to extinction than widely distributed species. However, current range maps often overestimate the distribution of species, including areas that are not within the suitable elevation or habitat for a species. Consequently, assessment of extinction risk using these maps could underestimate vulnerability.
In order to be effective in our quest to conserve the World’s most important places we must: 1) Translate global and national priorities into practical local actions, 2) Find synergies between biodiversity conservation and human welfare, 3) Evaluate the different dimensions of threats, in order to design effective conservation measures and prepare for future threats, and 4) Improve the methods used to evaluate species’ extinction risk and prioritize areas for conservation. The purpose of this dissertation is to address these points in Colombia and other global biodiversity hotspots.
In Chapter 2, I identified the global, strategic conservation priorities and then downscaled to practical local actions within the selected priorities in Colombia. I used existing range maps of 171 bird species to identify priority conservation areas that would protect the greatest number of species at risk in Colombia (endemic and small-ranged species). The Western Andes had the highest concentrations of such species—100 in total—but the lowest densities of national parks. I then adjusted the priorities for this region by refining these species ranges by selecting only areas of suitable elevation and remaining habitat. The estimated ranges of these species shrank by 18–100% after accounting for habitat and suitable elevation. Setting conservation priorities on the basis of currently available range maps excluded priority areas in the Western Andes and, by extension, likely elsewhere and for other taxa. By incorporating detailed maps of remaining natural habitats, I made practical recommendations for conservation actions. One recommendation was to restore forest connections to a patch of cloud forest about to become isolated from the main Andes.
For Chapter 3, I identified areas where bird conservation met ecosystem service protection in the Central Andes of Colombia. Inspired by the November 11th (2011) landslide event near Manizales, and the current poor results of Colombia’s Article 111 of Law 99 of 1993 as a conservation measure in this country, I set out to prioritize conservation and restoration areas where landslide prevention would complement bird conservation in the Central Andes. This area is one of the most biodiverse places on Earth, but also one of the most threatened. Using the case of the Rio Blanco Reserve, near Manizales, I identified areas for conservation where endemic and small-range bird diversity was high, and where landslide risk was also high. I further prioritized restoration areas by overlapping these conservation priorities with a forest cover map. Restoring forests in bare areas of high landslide risk and important bird diversity yields benefits for both biodiversity and people. I developed a simple landslide susceptibility model using slope, forest cover, aspect, and stream proximity. Using publicly available bird range maps, refined by elevation, I mapped concentrations of endemic and small-range bird species. I identified 1.54 km2 of potential restoration areas in the Rio Blanco Reserve, and 886 km2 in the Central Andes region. By prioritizing these areas, I facilitate the application of Article 111 which requires local and regional governments to invest in land purchases for the conservation of watersheds.
Chapter 4 dealt with elevational ranges of montane birds and the impact of lowland deforestation on their ranges in the Western Andes of Colombia, an important biodiversity hotspot. Using point counts and mist-nets, I surveyed six altitudinal transects spanning 2200 to 2800m. Three transects were forested from 2200 to 2800m, and three were partially deforested with forest cover only above 2400m. I compared abundance-weighted mean elevation, minimum elevation, and elevational range width. In addition to analyzing the effect of deforestation on 134 species, I tested its impact within trophic guilds and habitat preference groups. Abundance-weighted mean and minimum elevations were not significantly different between forested and partially deforested transects. Range width was marginally different: as expected, ranges were larger in forested transects. Species in different trophic guilds and habitat preference categories showed different trends. These results suggest that deforestation may affect species’ elevational ranges, even within the forest that remains. Climate change will likely exacerbate harmful impacts of deforestation on species’ elevational distributions. Future conservation strategies need to account for this by protecting connected forest tracts across a wide range of elevations.
In Chapter 5, I refine the ranges of 726 species from six biodiversity hotspots by suitable elevation and habitat. This set of 172 bird species for the Atlantic Forest, 138 for Central America, 100 for the Western Andes of Colombia, 57 for Madagascar, 102 for Sumatra, and 157 for Southeast Asia met the criteria for range size, endemism, threat, and forest use. Of these 586 species, the Red List deems 108 to be threatened: 15 critically endangered, 29 endangered, and 64 vulnerable. When ranges are refined by elevational limits and remaining forest cover, 10 of those critically endangered species have ranges < 100km2, but then so do 2 endangered species, seven vulnerable, and eight non-threatened ones. Similarly, 4 critically endangered species, 20 endangered, and 12 vulnerable species have refined ranges < 5000km2, but so do 66 non-threatened species. A striking 89% of these species I have classified in higher threat categories have <50% of their refined ranges inside protected areas. I find that for 43% of the species I assessed, refined range sizes fall within thresholds that typically have higher threat categories than their current assignments. I recommend these species for closer inspection by those who assess risk. These assessments are not only important on a species-by-species basis, but by combining distributions of threatened species, I create maps of conservation priorities. They differ significantly from those created from unrefined ranges.
Resumo:
Ponds are among the most biodiverse freshwater ecosystems, yet face significant threats from removal, habitat degradation and a lack of legislative protection globally. Information regarding the habitat quality and biodiversity of ponds across a range of land uses is vital for the long term conservation and management of ecological resources. In this study we examine the biodiversity and conservation value of macroinvertebrates from 91 lowland ponds across 3 land use types (35 floodplain meadow, 15 arable and 41 urban ponds). A total of 224 macroinvertebrate taxa were recorded across all ponds, with urban ponds and floodplain ponds supporting a greater richness than arable ponds at the landscape scale. However, at the alpha scale, urban ponds supported lower faunal diversity (mean: 22 taxa) than floodplain (mean: 32 taxa) or arable ponds (mean: 30 taxa). Floodplain ponds were found to support taxonomically distinct communities compared to arable and urban ponds. A total of 13 macroinvertebrate taxa with a national conservation designation were recorded across the study area and 12 ponds (11 floodplain and 1 arable pond) supported assemblages of high or very high conservation value. Pond conservation currently relies on the designation of individual ponds based on very high biodiversity or the presence of taxa with specific conservation designations. However, this site specific approach fails to acknowledge the contribution of ponds to freshwater biodiversity at the landscape scale. Ponds are highly appropriate sites outside of protected areas (urban/arable), with which the general public are already familiar, for local and landscape scale conservation of freshwater habitats.
Resumo:
Although wildfire plays an important role in maintaining biodiversity in many ecosystems, fire management to protect human assets is often carried out by different agencies than those tasked for conserving biodiversity. In fact, fire risk reduction and biodiversity conservation are often viewed as competing objectives. Here we explored the role of management through private land conservation and asked whether we could identify private land acquisition strategies that fulfill the mutual objectives of biodiversity conservation and fire risk reduction, or whether the maximization of one objective comes at a detriment to the other. Using a fixed budget and number of homes slated for development, we simulated 20 years of housing growth under alternative conservation selection strategies, and then projected the mean risk of fires destroying structures and the area and configuration of important habitat types in San Diego County, California, USA. We found clear differences in both fire risk projections and biodiversity impacts based on the way conservation lands are prioritized for selection, but these differences were split between two distinct groupings. If no conservation lands were purchased, or if purchases were prioritized based on cost or likelihood of development, both the projected fire risk and biodiversity impacts were much higher than if conservation lands were purchased in areas with high fire hazard or high species richness. Thus, conserving land focused on either of the two objectives resulted in nearly equivalent mutual benefits for both. These benefits not only resulted from preventing development in sensitive areas, but they were also due to the different housing patterns and arrangements that occurred as development was displaced from those areas. Although biodiversity conflicts may still arise using other fire management strategies, this study shows that mutual objectives can be attained through land-use planning in this region. These results likely generalize to any place where high species richness overlaps with hazardous wildland vegetation.
Resumo:
As an important component in collaborative natural resource management and nonprofit governance, social capital is expected to be related to variations in the performance of land trusts. Land trusts are charitable organizations that work to conserve private land locally, regionally, or nationally. The purpose of this paper is to identify the level of structural and cognitive social capital among local land trusts, and how these two types of social capital relate to the perceived success of land trusts. The analysis integrates data for land trusts operating in the U.S. south-central Appalachian region, which includes western North Carolina, southwest Virginia, and east Tennessee. We use factor analysis to elicit different dimensions of cognitive social capital, including cooperation among board members, shared values, common norms, and communication effectiveness. Measures of structural social capital include the size and diversity of organizational networks of both land trusts and their board members. Finally, a hierarchical linear regression model is employed to estimate how cognitive and structural social capital measures, along with other organizational and individual-level attributes, relate to perceptions of land trust success, defined here as achievement of the land trusts’ mission, conservation, and financial goals. Results show that the diversity of organizational partnerships, cooperation, and shared values among land trust board members are associated with higher levels of perceived success. Organizational capacity, land trust accreditation, volunteerism, and financial support are also important factors influencing perceptions of success among local, nonprofit land trusts.