944 resultados para computational fluid dynamic
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Mecânica
Resumo:
This paper analyses earthquake data in the perspective of dynamical systems and its Pseudo Phase Plane representation. The seismic data is collected from the Bulletin of the International Seismological Centre. The geological events are characterised by their magnitude and geographical location and described by means of time series of sequences of Dirac impulses. Fifty groups of data series are considered, according to the Flinn-Engdahl seismic regions of Earth. For each region, Pearson’s correlation coefficient is used to find the optimal time delay for reconstructing the Pseudo Phase Plane. The Pseudo Phase Plane plots are then analysed and characterised.
Resumo:
The definition and programming of distributed applications has become a major research issue due to the increasing availability of (large scale) distributed platforms and the requirements posed by the economical globalization. However, such a task requires a huge effort due to the complexity of the distributed environments: large amount of users may communicate and share information across different authority domains; moreover, the “execution environment” or “computations” are dynamic since the number of users and the computational infrastructure change in time. Grid environments, in particular, promise to be an answer to deal with such complexity, by providing high performance execution support to large amount of users, and resource sharing across different organizations. Nevertheless, programming in Grid environments is still a difficult task. There is a lack of high level programming paradigms and support tools that may guide the application developer and allow reusability of state-of-the-art solutions. Specifically, the main goal of the work presented in this thesis is to contribute to the simplification of the development cycle of applications for Grid environments by bringing structure and flexibility to three stages of that cycle through a commonmodel. The stages are: the design phase, the execution phase, and the reconfiguration phase. The common model is based on the manipulation of patterns through pattern operators, and the division of both patterns and operators into two categories, namely structural and behavioural. Moreover, both structural and behavioural patterns are first class entities at each of the aforesaid stages. At the design phase, patterns can be manipulated like other first class entities such as components. This allows a more structured way to build applications by reusing and composing state-of-the-art patterns. At the execution phase, patterns are units of execution control: it is possible, for example, to start or stop and to resume the execution of a pattern as a single entity. At the reconfiguration phase, patterns can also be manipulated as single entities with the additional advantage that it is possible to perform a structural reconfiguration while keeping some of the behavioural constraints, and vice-versa. For example, it is possible to replace a behavioural pattern, which was applied to some structural pattern, with another behavioural pattern. In this thesis, besides the proposal of the methodology for distributed application development, as sketched above, a definition of a relevant set of pattern operators was made. The methodology and the expressivity of the pattern operators were assessed through the development of several representative distributed applications. To support this validation, a prototype was designed and implemented, encompassing some relevant patterns and a significant part of the patterns operators defined. This prototype was based in the Triana environment; Triana supports the development and deployment of distributed applications in the Grid through a dataflow-based programming model. Additionally, this thesis also presents the analysis of a mapping of some operators for execution control onto the Distributed Resource Management Application API (DRMAA). This assessment confirmed the suitability of the proposed model, as well as the generality and flexibility of the defined pattern operators
Resumo:
With progressing CMOS technology miniaturization, the leakage power consumption starts to dominate the dynamic power consumption. The recent technology trends have equipped the modern embedded processors with the several sleep states and reduced their overhead (energy/time) of the sleep transition. The dynamic voltage frequency scaling (DVFS) potential to save energy is diminishing due to efficient (low overhead) sleep states and increased static (leakage) power consumption. The state-of-the-art research on static power reduction at system level is based on assumptions that cannot easily be integrated into practical systems. We propose a novel enhanced race-to-halt approach (ERTH) to reduce the overall system energy consumption. The exhaustive simulations demonstrate the effectiveness of our approach showing an improvement of up to 8 % over an existing work.
Resumo:
Replication is a proven concept for increasing the availability of distributed systems. However, actively replicating every software component in distributed embedded systems may not be a feasible approach. Not only the available resources are often limited, but also the imposed overhead could significantly degrade the system's performance. The paper proposes heuristics to dynamically determine which components to replicate based on their significance to the system as a whole, its consequent number of passive replicas, and where to place those replicas in the network. The results show that the proposed heuristics achieve a reasonably higher system's availability than static offline decisions when lower replication ratios are imposed due to resource or cost limitations. The paper introduces a novel approach to coordinate the activation of passive replicas in interdependent distributed environments. The proposed distributed coordination model reduces the complexity of the needed interactions among nodes and is faster to converge to a globally acceptable solution than a traditional centralised approach.
Resumo:
Replication is a proven concept for increasing the availability of distributed systems. However, actively replicating every software component in distributed embedded systems may not be a feasible approach. Not only the available resources are often limited, but also the imposed overhead could significantly degrade the system’s performance. This paper proposes heuristics to dynamically determine which components to replicate based on their significance to the system as a whole, its consequent number of passive replicas, and where to place those replicas in the network. The activation of passive replicas is coordinated through a fast convergence protocol that reduces the complexity of the needed interactions among nodes until a new collective global service solution is determined.
Resumo:
Due to the growing complexity and adaptability requirements of real-time systems, which often exhibit unrestricted Quality of Service (QoS) inter-dependencies among supported services and user-imposed quality constraints, it is increasingly difficult to optimise the level of service of a dynamic task set within an useful and bounded time. This is even more difficult when intending to benefit from the full potential of an open distributed cooperating environment, where service characteristics are not known beforehand and tasks may be inter-dependent. This paper focuses on optimising a dynamic local set of inter-dependent tasks that can be executed at varying levels of QoS to achieve an efficient resource usage that is constantly adapted to the specific constraints of devices and users, nature of executing tasks and dynamically changing system conditions. Extensive simulations demonstrate that the proposed anytime algorithms are able to quickly find a good initial solution and effectively optimise the rate at which the quality of the current solution improves as the algorithms are given more time to run, with a minimum overhead when compared against their traditional versions.
Resumo:
This paper proposes a dynamic scheduler that supports the coexistence of guaranteed and non-guaranteed bandwidth servers to efficiently handle soft-tasks’ overloads by making additional capacity available from two sources: (i) residual capacity allocated but unused when jobs complete in less than their budgeted execution time; (ii) stealing capacity from inactive non-isolated servers used to schedule best-effort jobs. The effectiveness of the proposed approach in reducing the mean tardiness of periodic jobs is demonstrated through extensive simulations. The achieved results become even more significant when tasks’ computation times have a large variance.
Resumo:
Wireless Sensor Networks (WSNs) are highly distributed systems in which resource allocation (bandwidth, memory) must be performed efficiently to provide a minimum acceptable Quality of Service (QoS) to the regions where critical events occur. In fact, if resources are statically assigned independently from the location and instant of the events, these resources will definitely be misused. In other words, it is more efficient to dynamically grant more resources to sensor nodes affected by critical events, thus providing better network resource management and reducing endto- end delays of event notification and tracking. In this paper, we discuss the use of a WSN management architecture based on the active network management paradigm to provide the real-time tracking and reporting of dynamic events while ensuring efficient resource utilization. The active network management paradigm allows packets to transport not only data, but also program scripts that will be executed in the nodes to dynamically modify the operation of the network. This presumes the use of a runtime execution environment (middleware) in each node to interpret the script. We consider hierarchical (e.g. cluster-tree, two-tiered architecture) WSN topologies since they have been used to improve the timing performance of WSNs as they support deterministic medium access control protocols.
Resumo:
Due to the growing complexity and dynamism of many embedded application domains (including consumer electronics, robotics, automotive and telecommunications), it is increasingly difficult to react to load variations and adapt the system's performance in a controlled fashion within an useful and bounded time. This is particularly noticeable when intending to benefit from the full potential of an open distributed cooperating environment, where service characteristics are not known beforehand and tasks may exhibit unrestricted QoS inter-dependencies. This paper proposes a novel anytime adaptive QoS control policy in which the online search for the best set of QoS levels is combined with each user's personal preferences on their services' adaptation behaviour. Extensive simulations demonstrate that the proposed anytime algorithms are able to quickly find a good initial solution and effectively optimise the rate at which the quality of the current solution improves as the algorithms are given more time to run, with a minimum overhead when compared against their traditional versions.
Resumo:
This paper proposes an efficient scalable Residue Number System (RNS) architecture supporting moduli sets with an arbitrary number of channels, allowing to achieve larger dynamic range and a higher level of parallelism. The proposed architecture allows the forward and reverse RNS conversion, by reusing the arithmetic channel units. The arithmetic operations supported at the channel level include addition, subtraction, and multiplication with accumulation capability. For the reverse conversion two algorithms are considered, one based on the Chinese Remainder Theorem and the other one on Mixed-Radix-Conversion, leading to implementations optimized for delay and required circuit area. With the proposed architecture a complete and compact RNS platform is achieved. Experimental results suggest gains of 17 % in the delay in the arithmetic operations, with an area reduction of 23 % regarding the RNS state of the art. When compared with a binary system the proposed architecture allows to perform the same computation 20 times faster alongside with only 10 % of the circuit area resources.
Resumo:
Most of today’s embedded systems are required to work in dynamic environments, where the characteristics of the computational load cannot always be predicted in advance. Furthermore, resource needs are usually data dependent and vary over time. Resource constrained devices may need to cooperate with neighbour nodes in order to fulfil those requirements and handle stringent non-functional constraints. This paper describes a framework that facilitates the distribution of resource intensive services across a community of nodes, forming temporary coalitions for a cooperative QoSaware execution. The increasing need to tailor provided service to each application’s specific needs determines the dynamic selection of peers to form such a coalition. The system is able to react to load variations, degrading its performance in a controlled fashion if needed. Isolation between different services is achieved by guaranteeing a minimal service quality to accepted services and by an efficient overload control that considers the challenges and opportunities of dynamic distributed embedded systems.
Resumo:
A QoS adaptation to dynamically changing system conditions that takes into consideration the user’s constraints on the stability of service provisioning is presented. The goal is to allow the system to make QoS adaptation decisions in response to fluctuations in task traffic flow, under the control of the user. We pay special attention to the case where monitoring the stability period and resource load variation of Service Level Agreements for different types of services is used to dynamically adapt future stability periods, according to a feedback control scheme. System’s adaptation behaviour can be configured according to a desired confidence level on future resource usage. The viability of the proposed approach is validated by preliminary experiments.
Resumo:
The scarcity and diversity of resources among the devices of heterogeneous computing environments may affect their ability to perform services with specific Quality of Service constraints, particularly in dynamic distributed environments where the characteristics of the computational load cannot always be predicted in advance. Our work addresses this problem by allowing resource constrained devices to cooperate with more powerful neighbour nodes, opportunistically taking advantage of global distributed resources and processing power. Rather than assuming that the dynamic configuration of this cooperative service executes until it computes its optimal output, the paper proposes an anytime approach that has the ability to tradeoff deliberation time for the quality of the solution. Extensive simulations demonstrate that the proposed anytime algorithms are able to quickly find a good initial solution and effectively optimise the rate at which the quality of the current solution improves at each iteration, with an overhead that can be considered negligible.
Resumo:
As high dynamic range video is gaining popularity, video coding solutions able to efficiently provide both low and high dynamic range video, notably with a single bitstream, are increasingly important. While simulcasting can provide both dynamic range videos at the cost of some compression efficiency penalty, bit-depth scalable video coding can provide a better trade-off between compression efficiency, adaptation flexibility and computational complexity. Considering the widespread use of H.264/AVC video, this paper proposes a H.264/AVC backward compatible bit-depth scalable video coding solution offering a low dynamic range base layer and two high dynamic range enhancement layers with different qualities, at low complexity. Experimental results show that the proposed solution has an acceptable rate-distortion performance penalty regarding the HDR H.264/AVC single-layer coding solution.