962 resultados para coffee - irrigation
Resumo:
Introduction: This study compared the combined use of sodium hypochlorite (NaOCl) and chlorhexidine (CXH) with citric acid and CXH on dentinal permeability and precipitate formation. Methods: Thirty-four upper anterior teeth were prepared by rotary instrumentation and NaOCl. The root canal surfaces were conditioned for smear layer removal using 15% citric acid solution under ultrasonic activation and a final wash with distilled water. All teeth were dried, and 30 specimens were randomly divided into three equal groups as follows: positive control group (PC), no irrigation; 15% citric acid + 2% CHX group (CA + CHX); and 1% NaOCl + 2% CHX group (NaOCl + CHX). All roots were immersed in a 0.2% Rhodamine B solution for 24 hours. One-millimeter-thick slices from the cementum-enamel junction were scanned at 400 dpi and analyzed using the software ImageLab (LIDO-USP, Sao Paulo, Brazil) for the assessment of leakage in percentage. For scanning electron microscopy analysis, four teeth, irrigated for NaOCl + CHX samples, were split in half, and each third was evaluated at 1,000x and 5,000x (at the precipitate). Results: Using the analysis of variance test followed by the Bonferroni comparison method, no statistical differences between groups were found when analyzed at the cervical and medium thirds. At the apical third, differences between the PC and NaOCl + CHX (p<0.05) and CA + CHX and NaOCl + CHX could be seen (p < 0.05). Conclusion: The combination of 1% NaOCl and 2% CHX solutions results in the formation of a flocculate precipitate that acts as a chemical smear layer reducing the dentinal permeability in the apical third. (J Endod 2010;36:847-850)
Resumo:
Abstract: The Murray-Darling Basin comprises over 1 million km2; it lies within four states and one territory; and over 12, 800 GL of irrigation water is used to produce over 40% of the nation's gross value of agricultural production. This production is used by a diverse collection of some-times mutually exclusive commodities (e.g. pasture; stone fruit; grapes; cotton and field crops). The supply of water for irrigation is subject to climatic and policy uncertainty. Variable inflows mean that water property rights do not provide a guaranteed supply. With increasing public scrutiny and environmental issues facing irrigators, greater pressure is being placed on this finite resource. The uncertainty of the water supply, water quality (salinity), combined with where water is utilised, while attempting to maximising return for investment makes for an interesting research field. The utilisation and comparison of a GAMS and Excel based modelling approach has been used to ask: where should we allocate water?; amongst what commodities?; and how does this affect both the quantity of water and the quality of water along the Murray-Darling river system?
Resumo:
Introduction: The present study evaluated the effect of a reducing agent on the bond strength of deproteinized root canal dentin surfaces when using a self-adhesive versus dual-cured cement. Regional differences were also evaluated. Methods: A total of 45 bovine incisor roots were divided into 3 groups: irrigation with physiologic solution (control), 10-minute deproteinization with 5% NaOCl, and 10-minute deproteinization with 5% NaOCl followed by 10 minutes of 10% ascorbic acid. Fiber posts were cemented with either RelyX 0100 or RelyX ARC (with SingleBond 2 or Clearfil SE Bond). The push-out bond strength was evaluated after 24 hours of storage. Data were submitted to three-way analyses of variance and Dunnett 13 tests (alpha = 0.05). Results: No differences between cements were observed within the testing conditions, regardless of the adhesive (P < .05). Deproteinization reduced bond strengths. Subsequent treatment with ascorbic acid was capable of reversing bond strength value changes to levels similar to those of controls. Regional radicular differences were also found, where coronal > middle > apical. Conclusions: The reducing agent was capable. of reversing the effect of dentin deproteinization, and RelyX U100 behaved similarly to RelyX ARC. (J Endod 2010;36:130-134)
Resumo:
P>Objective To evaluate the influence of apical size on cleaning of the apical third of curved canals prepared with rotary instruments. Methodology Forty-four mesiobuccal canals of maxillary molars teeth were instrumented to different apical sizes (30, 0.02; 35, 0.02; 40, 0.02; 45, 0.02) using a crown-down technique. After canal preparation, the apical thirds of the roots were submitted to histological processing and examination. The specimens were analysed at 40x magnification and the images were submitted to morphometric analysis with an integration grid to evaluate the percentage of debris and uninstrumented root canal walls. The action of the instruments on the root canal walls was assessed based on the surface regularity, abrupt change on the continuity of root canal walls, and partial or total pre-dentine removal. The results were statistically compared using one-way anova with post hoc Tukey test. Pearson`s correlation was performed to identify potential correlations between values. Results The percentage of uninstrumented root canal dentine was higher when apical enlargement was performed with instruments 30, 0.02 taper (55.64 +/- 4.62%) and 35, 0.02 taper (49.03 +/- 5.70%) than with instruments 40, 0.02 taper (38.08 +/- 10.44%) and 45, 0.02 taper (32.65 +/- 8.51%) (P < 0.05). More debris were observed when apical enlargement was performed with instruments 30, 0.02 taper (34.62 +/- 9.49%) and 35, 0.02 taper (25.33 +/- 7.37%) (P < 0.05). There was a significant correlation between the amount of remaining debris and the perimeter of uninstrumented root canal dentine (r = 0.9130, P < 0.001). Conclusion No apical enlargement size allowed the root canal walls to be prepared completely. Apical third cleanliness could be predicted by instrument diameter.
Resumo:
Objectives: We studied the association between cigarette smoking and ovarian cancer in a population-based case-control study. Methods: A total of 794 women with histologically confirmed epithelial ovarian cancer who were aged 18-79 years and resident in one of three Australian states were interviewed, together with 855 controls aged 18-79 years selected at random from the electoral roll from the same states. Information was obtained about cigarette smoking and other factors including age, parity, oral contraceptive use, and reproductive factors. We estimated the relative risk of ovarian cancer associated with cigarette smoking, accounting for histologic type, using multivariable logistic regression to adjust for confounding factors. Results: Women who had ever smoked cigarettes were more likely to develop ovarian cancer than women who had never smoked (adjusted odds ratio (OR) = 1.5; 95% confidence interval (CI) = 1.2-1.9). Risk was greater for ovarian cancers of borderline malignancy (OR = 2.4; 95% CI = 1.4-4.1) than for invasive tumors (OR = 1.7; 95% CI = 1.2-2.4) and the histologic subtype most strongly associated overall was the mucinous subtype among both current smokers (OR = 3.2; 95% CI = 1.8-5.7) and past smokers (OR = 2.3; 95% CI = 1.3-3.9). Conclusions: These data extend recent findings and suggest that cigarette smoking is a risk factor for ovarian cancer, especially mucinous and borderline mucinous types. From a public health viewpoint, this is one of the few reports of a potentially avoidable risk factor for ovarian cancer.
Resumo:
The aim of this study was to determine whether para-chloroaniline (PCA) and/or reactive oxygen species (ROS) are generated by chlorhexidine (CHX) alone or after CHX is mixed with calcium hydroxide at different time points. Mass spectrometry was performed to detect PCA in samples of 0.2% CHX and Ca(OH)2 mixed with 0.2% CHX. High-performance liquid chromatography was used to confirm the presence of CHX in the mixture with Ca(OH)2. The samples were analyzed immediately after mixing and after 7 and 14 days. During the intervals of the experiment, the samples were maintained at 36.5 degrees C and 95% relative humidity. PCA was detected in the 0.2% CHX solution after 14 days. The mixture of CHX with Ca(CH)2 liberated ROS at all time points, but no traces of CHX were present in the mixture as a result of immediate degradation of the CHX. (J Endod 2008;34:1508-1514)
Resumo:
This study evaluated the effect of 980-nm diode laser at different parameters on root canal dentin permeability associated with different irrigants. Seventy-five canines were sectioned at 15 mm from the apex, prepared mechanically up to #40 .02 instrument, and irrigated with 2 mL distilled water. Final irrigation (10 mL) was used as follows: (1) distilled water; (2) 1% NaOCl; (3) 17% ethylenediaminetetraacetic acid + a cationic surfactant cetyltrimethylammonium bromide (EDTAC). Laser was applied at 1.5 or 3.0 W as either continuous wave or pulsed wave (100 Hz). The teeth were then processed histochemically, the percentage of copper ion penetration into the dentin of the canal walls was counted, and the data were analyzed statistically with the Tukey-Kramer test (alpha < .01). When laser was associated with water, an increase in permeability was found, whereas permeability decreased when associated with EDTAC. Dentin permeability after laser irradiation was directly dependent on the solution used for final irrigation.
Resumo:
Introduction: The greatest reduction in microhardness of the most superficial layer of dentin of the root canal lumen is desired. The use of chelating agents during biomechanical preparation of root canals removes smear layer, increasing the access of the irrigant into the dentin tubules to allow adequate disinfection, and also reduces dentin microhardness, facilitating the action of endodontic instruments. This study evaluated the effect of different chelating solutions on the microhardness of the most superficial dentin layer from the root canal lumen. Methods: Thirty-five recently extracted single-rooted maxillary central incisors were instrumented, and the roots were longitudinally sectioned in a mesiodistal direction to expose the entire canal extension. The specimens were distributed in seven groups according to the final irrigation: 15% EDTA, 10% citric acid, 5% malic acid, 5% acetic acid, apple vinegar, 10% sodium citrate, and control (no irrigation). A standardized volume of 50 mu L of each chelating solution was used for 5 minutes. Dentin microhardness was measured with a Knoop indenter under a 10-g load and a 15-second dwell time. Data were analyzed statistically by one-way analysis of variance and Tukey-Kramer multiple-comparison test at 5% significance level. Results: EDTA and citric acid had the greatest overall effect, causing a sharp decrease in dentin microhardness without a significant difference (p > .05) from each other. However, both chelators differed significantly from the other solutions (p < .001). Sodium citrate and deionized water were similar to each other (p > .05) and did not affect dentin microhardness. Apple vinegar, acetic acid, and malic acid were similar to each other (p > .05) and presented intermediate results. Conclusion: Except for sodium citrate, all tested chelating solutions reduced microhardness of the most superficial root canal dentin layer. EDTA and citric acid were the most efficient. (J Endod 2011;37:358-362)
Resumo:
Purpose: This study evaluated the effect of the incorporation of the antimicrobial monomer methacryloyloxyundecylpyridinium bromide (MUPB) on the hardness, roughness, flexural strength, and color stability of a denture base material. Materials and Methods: Ninety-six disk-shaped (14-mm diameter x 4-mm thick) and 30 rectangular (65 x 10 x 3.3 mm(3)) heat-polymerized acrylic resin specimens were divided into three groups according to the concentration of MUPB (w/w): (A) 0%, (B) 0.3%, (C) 0.6%. Hardness was assessed by a hardness tester equipped with a Vickers diamond penetrator. Flexural strength and surface roughness were tested on a universal testing machine and a surface roughness tester, respectively. Color alterations (Delta E) were measured by a portable spectrophotometer after 12 and 36 days of immersion in water, coffee, or wine. Variables were analyzed by ANOVA/Tukey HSD test (alpha = 0.05). Results: The following mean results (+/-SD) were obtained for hardness (A: 15.6 +/- 0.6, B: 14.6 +/- 1.7, C: 14.8 +/- 0.8 VHN; ANOVA: p = 0.061), flexural strength (A: 111 +/- 17, B: 105 +/- 12, C: 88 +/- 12 MPa; ANOVA: p = 0.008), and roughness (A: 0.20 +/- 0.11, B: 0.20 +/- 0.11, C: 0.24 +/- 0.08 mu m; ANOVA: p = 0.829). Color changes of immersed specimens were significantly influenced by solutions and time (A: 9.1 +/- 3.1, B: 14.8 +/- 7.5, C: 13.3 +/- 6.1 Delta E; ANOVA: p < 0.05). Conclusions: The incorporation of MUPB affects the mechanical properties of a denture base acrylic resin; however, the only significant change was observed for flexural strength and may not be critical. Color changes were slightly higher when resin containing MUPB was immersed in wine for a prolonged time; however, the difference has debatable clinical relevance.
Resumo:
Purpose: This study evaluated the effect of different microwave polymerization cycles on the color changes of a microwave-processed denture base resin after accelerated aging and immersion in beverages. Materials and Methods: Specimens of light pink acrylic resin were divided into three groups according to polymerization cycle: (A) 500 W for 3 minutes, (B) 90 W for 13 minutes + 500 W for 90 seconds, and (C) 320 W for 3 minutes + 0 W for 4 minutes + 720 W for 3 minutes. Control groups were a heat-processed acrylic resin (T) and a chemically activated denture repair resin (Q). Eight specimens per group were aged in an artificial aging chamber and evaluated at 20, 192, and 384 hours. Another series of 40 specimens per group were immersed in water, coffee, tea, cola, or red wine and evaluated at 1, 12, and 36 days. Color was measured by a spectrophotometer before and after aging or immersion. Color changes (Delta E) were analyzed by ANOVA/Bonferroni t-test (alpha = 0.05). Results: Mean Delta E (+/- SD) after 384 hours of accelerated aging were (A) 2.51 +/- 0.50; (B) 3.16 +/- 1.09; (C) 2.89 +/- 1.06; (T) 2.64 +/- 0.34; and (Q) 9.03 +/- 0.40. Group Q had a significantly higher Delta E than the other groups. Color changes of immersed specimens were significantly influenced by solutions and time, but the five groups showed similar values. Mean Delta E at 36 days were (water) 1.4 +/- 0.8; (coffee) 1.3 +/- 0.6; (tea) 1.7 +/- 0.5; (cola) 1.4 +/- 0.7; and (red wine) 10.2 +/- 2.7. Results were similar among the five test groups. Conclusions: Color changes of the microwave-polymerized denture base resin tested were not affected by different polymerization cycles after accelerated aging or immersion in beverages. These changes were similar to the conventional heat-polymerized acrylic resin test, but lower than the repair resin after accelerated aging.
Resumo:
Leaf water potential (psi (l)) represents a good indicator of the water status of plants, and continuous monitoring of it can be useful in research and field applications such as scheduling irrigation. Changes in stem diameter (Sd) were used for monitoring psi (l) of pot-grown sorghum [Sorghum bicolor (L.) Moench] plants in a glasshouse. This method requires occasional calibration of S-d values against psi (l). Predicted values of psi (l), based on a single calibration show a good correlation with measured psi (l), values over a period of 13 d before and after the calibration. The correlation can further be improved with shorter time intervals.
Resumo:
Recent studies have demonstrated the occurrence of elevated levels of higher chlorinated PCDDs in the coastal environment of Queensland, Australia. This study presents new data for OCDD contamination and full PCDD/F profile analysis in the environment of Queensland. Marine sediments, irrigation drain sediments and topsoil were collected from sites that were expected to be influenced by specific land-use types. High OCDD concentrations were associated mainly with sediments collected near the mouth of rivers which drain into large catchments in the tropical and subtropical regions. Further, analysis of sediments from irrigation drains could be clearly differentiated on the basis of OCDD contamination, with high concentrations in samples from sugarcane drains collected from coastal regions, and low concentrations in drain sediments from drier inland cotton growing areas. PCDD/F congener-specific analysis demonstrated almost identical congener profiles in all samples collected along the coastline. This indicates the source to be widespread. Profiles were dominated by higher chlorinated PCDDs, in particular OCDD whereas 2,3,7,8-substituted PCDFs were below the limit of quantification in the majority of samples. The full PCDD/F profile analysis of samples strongly resemble those reported for lake sediments from Mississippi and kaolinite samples from Germany, Strong similarities to these samples with respect to congener profiles and isomer patterns may indicate the presence of a similar source and/or formation process that is yet unidentified. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
The magnitude of genotype-by-management (G x M) interactions for grain yield and grain protein concentration was examined in a multi-environment trial (MET) involving a diverse set of 272 advanced breeding lines from the Queensland wheat breeding program. The MET was structured as a series of management-regimes imposed at 3 sites for 2 years. The management-regimes were generated at each site-year as separate trials in which planting time, N fertiliser application rate, cropping history, and irrigation were manipulated. irrigation was used to simulate different rainfall regimes. From the combined analysis of variance, the G x M interaction variance components were found to be the largest source of G x E interaction variation for both grain yield (0.117 +/- 0.005 t(2) ha(-2); 49% of total G x E 0.238 +/- 0.028 t(2) ha(-2)) and grain protein concentration (0.445 +/- 0.020%(2); 82% of total G x E 0.546 +/- 0.057%(2)), and in both cases this source of variation was larger than the genotypic variance component (grain yield 0.068 +/- 0.014 t(2) ha(-2) and grain protein 0.203 +/- 0.026%(2)). The genotypic correlation between the traits varied considerably with management-regime, ranging from -0.98 to -0.31, with an estimate of 0.0 for one trial. Pattern analysis identified advanced breeding lines with improved grain yield and grain protein concentration relative to the cultivars Hartog, Sunco and Meteor. It is likely that a large component of the previously documented G x E interactions for grain yield of wheat in the northern grains region are in part a result of G x M interactions. The implications of the strong influence of G x M interactions for the conduct of wheat breeding METs in the northern region are discussed. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Stable carbon and nitrogen isotope signatures (delta C-13 and delta N-15) of Cannabis sativa were assessed for their usefulness to trace seized Cannabis leaves to the country of origin and to source crops by determining how isotope signatures relate to plant growth conditions. The isotopic composition of Cannabis examined here covered nearly the entire range of values reported for terrestrial C-3 plants. The delta C-13 values of Cannabis from Australia, Papua New Guinea and Thailand ranged from -36 to -25 parts per thousand, and delta N-15 values ranged from -1.0 to 15.8 parts per thousand. The stable isotope content did not allow differentiation between Cannabis originating from the three countries, but delta C-13 values of plantation-grown Cannabis differed between well-watered plants (average delta C-13 of -30.0 parts per thousand) and plants that had received little irrigation (average delta C-13 of -26.4 parts per thousand). Cannabis grown under controlled conditions had delta C-13 values of -32.6 and -30.6 parts per thousand with high and low water supply, respectively. These results indicate that water availability determines leaf C-13 in plants grown under similar conditions of light, temperature and air humidity. The delta C-13 values also distinguished between indoor- and outdoor-grown Cannabis; indoor- grown plants had overall more negative delta C-13 values (average -31.8 parts per thousand) than outdoor-grown plants (average -27.9 parts per thousand). Contributing to the strong C-13-depletion of indoor- grown plants may be high relative humidity, poor ventilation and recycling of C-13-depleted respired CO2. Mineral fertilizers had mostly lower delta N-15 values (-0.2 to 2.2 parts per thousand) than manure-based fertilizers (7.6 to 22.7 parts per thousand). It was possible to link delta N-15 values of fertilizers associated with a crop site to soil and plant delta N-15 values. The strong relationship between soil, fertilizer, and plant delta N-15 suggests that Cannabis delta N-15 is determined by the isotopic composition of the nitrogen source. The distinct delta N-15 values measured in Cannabis crops make delta N-15 an excellent tool for matching seized Cannabis with a source crop. A case study is presented that demonstrates how delta C-13 and delta N-15 values can be used as a forensic tool.
Resumo:
FILTER is an innovative, CSIRO developed system for treating effluent using high rate land application and subsequent effluent recapture via a closely spaced, subsurface drainage network. We report on the summer performance of a FILTER system established in a subtropical environment on a relatively impermeable swelling clay soil underlain by a deep regional water table. Using secondary treated sewage effluent, the FILTER system produced effluent of tertiary nutrient standards (less than or equal to5 mg/L TN; less than or equal to1 mg/L TP), with salinity levels suitable for subsequent irrigation reuse (EC less than or equal to2.5 dS/m). Removal of faecal coliforms was considerably less effective. The hydraulic loading rate achieved was about two and a half times larger than conventional irrigation demand, but this was associated with high deep percolation losses (e 3 mm/day). Comparisons are made with the original FILTER system developed and tested by Jayawardane et al. in temperate Australia. Suggestions are made for modifications to, and further testing of FILTER in a subtropical environment.