976 resultados para co2 emissions
Resumo:
Forest biomass represents a geographically distributed feedstock, and geographical location affects the greenhouse gas (GHG) performance of a given forest-bioenergy system in several ways. For example, biomass availability, forest operations, transportation possibilities and the distances involved, biomass end-use possibilities, fossil reference systems, and forest carbon balances all depend to some extent on location. The overall objective of this thesis was to assess the GHG emissions derived from supply and energy-utilization chains of forest biomass in Finland, with a specific focus on the effect of location in relation to forest biomass’s availability and the transportation possibilities. Biomass availability and transportation-network assessments were conducted through utilization of geographical information system methods, and the GHG emissions were assessed by means of lifecycle assessment. The thesis is based on four papers in which forest biomass supply on industrial scale was assessed. The feedstocks assessed in this thesis include harvesting residues, smalldiameter energy wood and stumps. The principal implication of the findings in this thesis is that in Finland, the location and availability of biomass in the proximity of a given energyutilization or energy-conversion plant is not a decisive factor in supply-chain GHG emissions or the possible GHG savings to be achieved with forest-biomass energy use. Therefore, for the greatest GHG reductions with limited forest-biomass resources, energy utilization of forest biomass in Finland should be directed to the locations where most GHG savings are achieved through replacement of fossil fuels. Furthermore, one should prioritize the types of forest biomass with the lowest direct supply-chain GHG emissions (e.g., from transport and comminution) and the lowest indirect ones (in particular, soil carbon-stock losses), regardless of location. In this respect, the best combination is to use harvesting residues in combined heat and power production, replacing peat or coal.
Resumo:
Durante a fase de desenvolvimento de novos produtos fitossanitários é comumente utilizado o pulverizador a pressão constante, pressurizado com CO2. O gás carbônico pode provocar a acidificação da água e afetar o comportamento do composto que está sendo avaliado. No presente trabalho, amostras de água de 30 diferentes fontes foram pressurizadas com CO2 durante cinco minutos, até 275 kPa (40 lbf/pol.2), e o pH foi medido na água que saiu do bico e na água no inteior do tanque do pulverizador. Os resultados mostraram redução nos valores do pH em toda as amostras . Os valores do pH elevaram-se ligeiramente após a saída da água pelo bico do pulverizador. A redução, em alguns casos, foi marcante, atingindo 4,91 unidades de pH no caso mais drástico. Esses dados levam a recomendar cautela na interpretação dos resultados obtidos com o uso dos pulverizadores pressurizados com o gás carbônico.
Resumo:
This thesis presents a one-dimensional, semi-empirical dynamic model for the simulation and analysis of a calcium looping process for post-combustion CO2 capture. Reduction of greenhouse emissions from fossil fuel power production requires rapid actions including the development of efficient carbon capture and sequestration technologies. The development of new carbon capture technologies can be expedited by using modelling tools. Techno-economical evaluation of new capture processes can be done quickly and cost-effectively with computational models before building expensive pilot plants. Post-combustion calcium looping is a developing carbon capture process which utilizes fluidized bed technology with lime as a sorbent. The main objective of this work was to analyse the technological feasibility of the calcium looping process at different scales with a computational model. A one-dimensional dynamic model was applied to the calcium looping process, simulating the behaviour of the interconnected circulating fluidized bed reactors. The model incorporates fundamental mass and energy balance solvers to semi-empirical models describing solid behaviour in a circulating fluidized bed and chemical reactions occurring in the calcium loop. In addition, fluidized bed combustion, heat transfer and core-wall layer effects were modelled. The calcium looping model framework was successfully applied to a 30 kWth laboratory scale and a pilot scale unit 1.7 MWth and used to design a conceptual 250 MWth industrial scale unit. Valuable information was gathered from the behaviour of a small scale laboratory device. In addition, the interconnected behaviour of pilot plant reactors and the effect of solid fluidization on the thermal and carbon dioxide balances of the system were analysed. The scale-up study provided practical information on the thermal design of an industrial sized unit, selection of particle size and operability in different load scenarios.
Resumo:
O presente experimento, inteiramente casualizado, foi desenvolvido em condições de laboratório no Departamento de Defesa Fitossanitária, FCA/UNESP - Botucatu, entre julho e setembro de 1992. Amostras de Areia Quartzosa equivalentes à 40 g de terra seca à 105 oC ± 2 com ou sem adição de 1,9 g de matéria seca de plantas de poaia-branca (Richardia brasiliensis), 0,19 g de nitrogênio (NH4)2SO4 e 0,88 g de apatita de Araxá, foram incubadas no escuro a 25 o C ± 2 , com umidade mantida a 60% da capacidade de retenção de água. Durante a incubação, determinou-se o CO2 liberado, utilizando-se o método de retenção em NAOH seguida de titulometria com HCl; a biomassa microbiana, método de fumigação-incubação; o pH e a quantidade de fósforo extraído por resina. A maior liberação de CO2 ocorreu durante os dez primeiros dias de incubação, com 77% do total de carbono liberado nos tratamentos com adição de poaia, e 37% nos tratamentos sem adição da mesma. A liberação de CO2 foi 57 vezes maior nos tratamentos com poaia em relação ao controle. A poaia também provocou aumentos na biomassa microbiana (média de 8 vezes a biomassa do tratamento controle), e a adição de nitrogênio e/ou fosfato de rocha junto à poaia antecipou os picos de formação de biomassa de 20 para 10 dias de incubação. Os níveis de fósforo disponível foram maiores no tratamento com adição de fosfato de rocha apenas. A poaia também alcalinizou o sistema, não permitindo desta forma, observar-se relação significativa entre pH e teor de fósforo disponível.
Resumo:
More discussion is required on how and which types of biomass should be used to achieve a significant reduction in the carbon load released into the atmosphere in the short term. The energy sector is one of the largest greenhouse gas (GHG) emitters and thus its role in climate change mitigation is important. Replacing fossil fuels with biomass has been a simple way to reduce carbon emissions because the carbon bonded to biomass is considered as carbon neutral. With this in mind, this thesis has the following objectives: (1) to study the significance of the different GHG emission sources related to energy production from peat and biomass, (2) to explore opportunities to develop more climate friendly biomass energy options and (3) to discuss the importance of biogenic emissions of biomass systems. The discussion on biogenic carbon and other GHG emissions comprises four case studies of which two consider peat utilization, one forest biomass and one cultivated biomasses. Various different biomass types (peat, pine logs and forest residues, palm oil, rapeseed oil and jatropha oil) are used as examples to demonstrate the importance of biogenic carbon to life cycle GHG emissions. The biogenic carbon emissions of biomass are defined as the difference in the carbon stock between the utilization and the non-utilization scenarios of biomass. Forestry-drained peatlands were studied by using the high emission values of the peatland types in question to discuss the emission reduction potential of the peatlands. The results are presented in terms of global warming potential (GWP) values. Based on the results, the climate impact of the peat production can be reduced by selecting high-emission-level peatlands for peat production. The comparison of the two different types of forest biomass in integrated ethanol production in pulp mill shows that the type of forest biomass impacts the biogenic carbon emissions of biofuel production. The assessment of cultivated biomasses demonstrates that several selections made in the production chain significantly affect the GHG emissions of biofuels. The emissions caused by biofuel can exceed the emissions from fossil-based fuels in the short term if biomass is in part consumed in the process itself and does not end up in the final product. Including biogenic carbon and other land use carbon emissions into the carbon footprint calculations of biofuel reveals the importance of the time frame and of the efficiency of biomass carbon content utilization. As regards the climate impact of biomass energy use, the net impact on carbon stocks (in organic matter of soils and biomass), compared to the impact of the replaced energy source, is the key issue. Promoting renewable biomass regardless of biogenic GHG emissions can increase GHG emissions in the short term and also possibly in the long term.
Resumo:
Global warming is assertively the greatest environmental challenge for humans of 21st century. It is primarily caused by the anthropogenic greenhouse gas (GHG) that trap heat in the atmosphere. Because of which, the GHG emission mitigation, globally, is a critical issue in the political agenda of all high-profile nations. India, like other developing countries, is facing this threat of climate change while dealing with the challenge of sustaining its rapid economic growth. India’s economy is closely connected to its natural resource base and climate sensitive sectors like water, agriculture and forestry. Due to Climate change the quality and distribution of India’s natural resources may transform and lead to adverse effects on livelihood of its people. Therefore, India is expected to face a major threat due to the projected climate change. This study proposes possible solutions for GHG emission mitigation that are specific to the power sector of India. The methods discussed here will take Indian power sector from present coal dominant ideology to a system, centered with renewable energy sources. The study further proposes a future scenario for 2050, based on the present Indian government policies and global energy technologies advancements.
Resumo:
O objetivo deste trabalho foi avaliar a decomposição de três espécies de plantas aquáticas imersas, incorporadas ao solo, provenientes do controle mecânico, em reservatórios de usinas hidrelétricas. O estudo foi realizado em casa de vegetação, localizada no Núcleo de Pesquisas Avançadas em Matologia (NUPAM) da FCA/Unesp-Botucatu. A avaliação foi conduzida em vasos contendo 14 kg de solo, com três incorporações de 50 e 100 t MF de plantas ha-1, sob duas condições de solo: seco e úmido. Com a simulação de descarte da biomassa coletada e incorporada ao solo, pôde-se conhecer, através da liberação de CO2, a degradação de três espécies de macrófitas aquáticas submersas. Para quantificação do CO2 liberado, em cada vaso foi acondicionado um frasco com solução de NaOH, sendo, logo após, lacrados e incubados por 24 horas; em seguida, foram titulados com HCl. Para ajuste e interpolação dos dados, estes foram analisados seguindo modelo de Mitscherlich, com algumas modificações. As liberações acumuladas em solo úmido foram de 1.294 e 1.582 kg CO2 ha-1, sendo 6,2 e 5,6 vezes superiores ao ocorrido em solo seco, para 50 e 100 t MF ha-1, respectivamente, observando-se que cerca de 55% da liberação de CO2 ocorreu nos primeiros 30 dias. Pode-se concluir que o solo seco é a melhor condição para descarte e incorporação da biomassa, porém deverá existir um sistema de irrigação para que o processo de degradação da biomassa incorporada seja acelerado.
Resumo:
Os efeitos dos herbicidas bentazon, metolachlor, trifluralin, imazethapyr, imazethapyr+lactofen, haloxyfop-methyl, glyphosate e chlorimuron-ethyl, testados em duas concentrações (duas e dez vezes a dose média recomendada por hectare), sobre a atividade microbiana foram estudados em amostras de solo que nunca haviam recebido tratamento com pesticidas. Como bioindicadores, utilizou-se a respiração microbiana, quantificando a emissão de CO2 aos 2, 4, 8, 12, 16, 20 e 24 dias após incubação, a atividade da enzima desidrogenase e a hidrólise de diacetato de fluoresceína (FDA), aos 8 e 28 dias. Bentazon e a mistura de imazethapyr+lactofen na maior concentração e o haloxyfop-methyl nas duas concentrações apresentaram efeitos inibitórios na respiração edáfica, embora diferentes em época e duração do efeito. Nenhum dos tratamentos herbicidas afetou a hidrólise da FDA. A atividade da desidrogenase foi inibida, o que foi verificado em análise realizada aos oito dias,nas amostras de solo com alta concentração de bentazon e imazethapyr; no entanto, foi estimulada nos tratamentos com baixa concentração de metolachlor e imazethapyr e na maior concentração de glyphosate. A respiração basal e a atividade da desidrogenase mostraram maior sensibilidade na detecção de efeitos dos herbicidas sobre a microbiota do solo que as determinações da hidrólise de FDA. Apenas foi encontrada correlação significativa entre a atividade da desidrogenase e a respiração basal aos oito dias de incubação. Os resultados destacam a importância da consideração de múltiplos indicadores na avaliação dos efeitos de herbicidas na microbiota do solo.
Resumo:
Tämän kandidaatintyön tavoitteena oli selvittää mahdollisuuksia 14C:n kemiallisten muotojen eriyttämiseen käyttäen Loviisan voimalaitoksella olemassa olevaa näytteenkeräyslaitteistoa. Lisäksi tarkoituksena oli selvittää parhaiten tähän käyttötarkoitukseen soveltuva zeoliittityyppiä tyypeistä 4A, 5A ja 13X. Työn kirjallisessa osassa käsitellään ydinvoimalaitoksen C14-päästöjä keskittyen pääosin Loviisan VVER-laitokseen. Adsorption osalta esitellään kaupallisesti käytettyjä adsorptiomateriaaleja ja paneudutaan adsorptioon fysikaalisena ja kemiallisena ilmiönä. Lisäksi esitellään kahden desorptiomenetelmän perusperiaatteet. Kirjallisen osan lopussa kootaan tutkimukseen vaikuttavia tekijöitä ja esitellään aiemmin käytössä ollut näytteenkeräyslaitteisto. Kokeellisessa osassa esitellään työssä käytetyt laitteistot. Lisäksi on kuvattu mittausten suoritus nestetuikelaskurilla. Tämän jälkeen työssä esitellään mittaustuloksien käsittely ja näin saadut tulokset.
Resumo:
Organic farming is perceived to be an environmental friendly method of food production, thus assumed to be an alternative means of minimizing food-based environmental footprints. However, lower yield and unproductive years in organic crop rotation raise questions of whether it is really an environmentally friendly farming practice. Thus, the aim of this thesis was to examine the carbon footprint and energy demands of organic carrots cultivated and sold in South-Savo, Finland and compare them with those of local and imported conventional carrots using lifecycle assessment (LCA) as a method. From the investigation, it was found that organic carrots produced in South-Savo have the lowest GHG emissions and energy demand. The GHG emissions of local organic, local conventional and imported conventional carrots were found to be 4g CO2 eq. kgcarrots-1, 142g CO2 eq. kgcarrots-1 and 280 g CO2 eq. kgcarrots-1, respectively. On the other hand, energy demand for those carrots was found to be 1,33 MJ, 1,88 MJ and 3,68 MJ kgcarrots-1. Furthermore, it was also found that local organic carrots would have approximately similar GHG emissions as conventional counterpart if soil carbon stock change was excluded from the study.
Resumo:
Switching power supplies are usually implemented with a control circuitry that uses constant clock frequency turning the power semiconductor switches on and off. A drawback of this customary operating principle is that the switching frequency and harmonic frequencies are present in both the conducted and radiated EMI spectrum of the power converter. Various variable-frequency techniques have been introduced during the last decade to overcome the EMC problem. The main objective of this study was to compare the EMI and steady-state performance of a switch mode power supply with different spread-spectrum/variable-frequency methods. Another goal was to find out suitable tools for the variable-frequency EMI analysis. This thesis can be divided into three main parts: Firstly, some aspects of spectral estimation and measurement are presented. Secondly, selected spread spectrum generation techniques are presented with simulations and background information. Finally, simulations and prototype measurements from the EMC and the steady-state performance are carried out in the last part of this work. Combination of the autocorrelation function, the Welch spectrum estimate and the spectrogram were used as a substitute for ordinary Fourier methods in the EMC analysis. It was also shown that the switching function can be used in preliminary EMC analysis of a SMPS and the spectrum and autocorrelation sequence of a switching function correlates with the final EMI spectrum. This work is based on numerous simulations and measurements made with the prototype. All these simulations and measurements are made with the boost DC/DC converter. Four different variable-frequency modulation techniques in six different configurations were analyzed and the EMI performance was compared to the constant frequency operation. Output voltage and input current waveforms were also analyzed in time domain to see the effect of the spread spectrum operation on these quantities. According to the results presented in this work, spread spectrum modulation can be utilized in power converter for EMI mitigation. The results from steady-state voltage measurements show, that the variable-frequency operation of the SMPS has effect on the voltage ripple, but the ripple measured from the prototype is still acceptable in some applications. Both current and voltage ripple can be controlled with proper main circuit and controller design.
Resumo:
The Kraft pulping process is the dominant chemical pulping process in the world. Roughly 195 million metric tons of black liquor are produced annually as a by-product from the Kraft pulping process. Black liquor consists of spent cooking chemicals and dissolved organics from the wood and can contain up to 0.15 wt% nitrogen on dry solids basis. The cooking chemicals from black liquor are recovered in a chemical recovery cycle. Water is evaporated in the first stage of the chemical recovery cycle, so the black liquor has a dry solids content of 65-85% prior to combustion. During combustion of black liquor, a portion of the black liquor nitrogen is volatilized, finally forming N2 or NO. The rest of the nitrogen remains in the char as char nitrogen. During char conversion, fixed carbon is burned off leaving the pulping chemicals as smelt, and the char nitrogen forms mostly smelt nitrogen (cyanate, OCN-). Smelt exits the recovery boiler and is dissolved in water. The cyanate from smelt decomposes in the presence of water, forming NH3, which causes nitrogen emissions from the rest of the chemical recovery cycle. This thesis had two focuses: firstly, to determine how the nitrogen chemistry in the recovery boiler is affected by modification of black liquor; and secondly, to find out what causes cyanate formation during thermal conversion, and which parameters affect cyanate formation and decomposition during thermal conversion of black liquor. The fate of added biosludge nitrogen in chemical recovery was determined in Paper I. The added biosludge increased the nitrogen content of black liquor. At the pulp mill, the added biosludge did not increase the NO formation in the recovery boiler, but instead increased the amount of cyanate in green liquor. The increased cyanate caused more NH3 formation, which increased the NCG boiler’s NO emissions. Laboratory-scale experiments showed an increase in both NO and cyanate formation after biosludge addition. Black liquor can be modified, for example by addition of a solid biomass to increase the energy density of black liquor, or by separation of lignin from black liquor by precipitation. The precipitated lignin can be utilized in the production of green chemicals or as a fuel. In Papers II and III, laboratory-scale experiments were conducted to determine the impact of black liquor modification on NO and cyanate formation. Removal of lignin from black liquor reduced the nitrogen content of the black liquor. In most cases NO and cyanate formation decreased with increasing lignin removal; the exception was NO formation from lignin lean soda liquors. The addition of biomass to black liquor resulted in a higher nitrogen content fuel mixture, due to the higher nitrogen content of biomass compared to black liquor. More NO and cyanate were formed from the fuel mixtures than from pure black liquor. The increased amount of formed cyanate led to the hypothesis that black liquor is catalytically active and converts a portion of the nitrogen in the mixed fuel to cyanate. The mechanism behind cyanate formation during thermal conversion of black liquor was not clear before this thesis. Paper IV studies the cyanate formation of alkali metal loaded fuels during gasification in a CO2 atmosphere. The salts K2CO3, Na2CO3, and K2SO4 all promoted char nitrogen to cyanate conversion during gasification, while KCl and CaCO3 did not. It is now assumed that cyanate is formed when alkali metal carbonate or an active intermediate of alkali metal carbonate (e.g. -CO2K) reacts with the char nitrogen forming cyanate. By testing different fuels (bark, peat, and coal), each of which had a different form of organic nitrogen, it was concluded that the form of organic nitrogen in char also has an impact on cyanate formation. Cyanate can be formed during pyrolysis of black liquor, but at temperatures 900°C or above, the formed cyanate will decompose. Cyanate formation in gasifying conditions with different levels of CO2 in the atmosphere was also studied. Most of the char nitrogen was converted to cyanate during gasification at 800-900°C in 13-50% CO2 in N2, and only 5% of the initial fuel nitrogen was converted to NO during char conversion. The formed smelt cyanate was stable at 800°C 13% CO2, while it decomposed at 900°C 13% CO2. The cyanate decomposition was faster at higher temperatures and in oxygen-containing atmospheres than in an inert atmosphere. The presence of CO2 in oxygencontaining atmospheres slowed down the decomposition of cyanate. This work will provide new information on how modification of black liquor affects the nitrogen chemistry during thermal conversion of black liquor and what causes cyanate formation during thermal conversion of black liquor. The formation and decomposition of cyanate was studied in order to provide new data, which would be useful in modeling of nitrogen chemistry in the recovery boiler.
Resumo:
The greatest threat that the biodegradable waste causes on the environment is the methane produced in landfills by the decomposition of this waste. The Landfill Directive (1999/31/EC) aims to reduce the landfilling of biodegradable waste. In Finland, 31% of biodegradable municipal waste ended up into landfills in 2012. The pressure of reducing disposing into landfills is greatly increased by the forthcoming landfill ban on biodegradable waste in Finland. There is a need to discuss the need for increasing the utilization of biodegradable waste in regional renewable energy production to utilize the waste in a way that allows the best possibilities to reduce GHG emissions. The objectives of the thesis are: (1) to find important factors affecting renewable energy recovery possibilities from biodegradable waste, (2) to determine the main factors affecting the GHG balance of biogas production system and how to improve it and (3) to find ways to define energy performance of biogas production systems and what affects it. According to the thesis, the most important factors affecting the regional renewable energy possibilities from biodegradable waste are: the amount of available feedstock, properties of feedstock, selected utilization technologies, demand of energy and material products and the economic situation of utilizing the feedstocks. The biogas production by anaerobic digestion was seen as the main technology for utilizing biodegradable waste in agriculturally dense areas. The main reason for this is that manure was seen as the main feedstock, and it can be best utilized with anaerobic digestion, which can produce renewable energy while maintaining the spreading of nutrients on arable land. Biogas plants should be located close to the heat demand that would be enough to receive the produced heat also in the summer months and located close to the agricultural area where the digestate could be utilized. Another option for biogas use is to upgrade it to biomethane, which would require a location close to the natural gas grid. The most attractive masses for biogas production are municipal and industrial biodegradable waste because of gate fees the plant receives from them can provide over 80% of the income. On the other hand, directing gate fee masses for small-scale biogas plants could make dispersed biogas production more economical. In addition, the combustion of dry agricultural waste such as straw would provide a greater energy amount than utilizing them by anaerobic digestion. The complete energy performance assessment of biogas production system requires the use of more than one system boundary. These can then be used in calculating output–input ratios of biogas production, biogas plant, biogas utilization and biogas production system, which can be used to analyze different parts of the biogas production chain. At the moment, it is difficult to compare different biogas plants since there is a wide variation of definitions for energy performance of biogas production. A more consistent way of analyzing energy performance would allow comparing biogas plants with each other and other recovery systems and finding possible locations for further improvement. Both from the GHG emission balance and energy performance point of view, the energy consumption at the biogas plant was the most significant factor. Renewable energy use to fulfil the parasitic energy demand at the plant would be the most efficient way to reduce the GHG emissions at the plant. The GHG emission reductions could be increased by upgrading biogas to biomethane and displacing natural gas or petrol use in cars when compared to biogas CHP production. The emission reductions from displacing mineral fertilizers with digestate were seen less significant, and the greater N2O emissions from spreading digestate might surpass the emission reductions from displacing mineral fertilizers.
Resumo:
The nucleus isthmi (NI) is a mesencephalic structure of the amphibian brain. It has been reported that NI plays an important role in integration of CO2 chemoreceptor information and glutamate is probably involved in this function. However, very little is known about the mechanisms involved. Recently, it has been shown that nitric oxide synthase (NOS) is expressed in the brain of the frog. Thus the gas nitric oxide (NO) may be involved in different functions in the brain of amphibians and may act as a neurotransmitter or neuromodulator. We tested the hypothesis that NO plays a role in CO2-drive to breathing, specifically in the NI comparing pulmonary ventilation, breathing frequency and tidal volume, after microinjecting 100 nmol/0.5 µl of L-NAME (a nonselective NO synthase inhibitor) into the NI of toads (Bufo paracnemis) exposed to normocapnia and hypercapnia. Control animals received microinjections of vehicle of the same volume. Under normocapnia no significant changes were observed between control and L-NAME-treated toads. Hypercapnia caused a significant (P<0.01) increase in ventilation only after intracerebral microinjection of L-NAME. Exposure to hypercapnia caused a significant increase in breathing frequency both in control and L-NAME-treated toads (P<0.01 for the control group and P<0.001 for the L-NAME group). The tidal volume of the L-NAME group tended to be higher than in the control group under hypercapnia, but the increase was not statistically significant. The data indicate that NO in the NI has an inhibitory effect only when the respiratory drive is high (hypercapnia), probably acting on tidal volume. The observations reported in the present investigation, together with other studies on the presence of NOS in amphibians, indicate a considerable degree of phylogenetic conservation of the NO pathway amongst vertebrates.
Resumo:
Different nitrogen oxide removal technologies for rotary lime kiln are studied in this thesis, the main focus being in commercial technologies. Post-combustion methods are investigated in more detail as potential possible NOx removal with combustion methods in rotary lime kiln is more limited or primary methods are already in use. However, secondary methods as NOx scrubber, SNCR or SCR technologies are not listed as the Best Available Technologies defined by European Union. BAT technologies for NOx removal in lime kiln are (1) Optimised combustion and combustion control, (2) Good mixing of fuel and air, (3) Low-NOx burner and (4) Fuel selection/low-N fuel. SNCR method is the most suitable technique for NOx removal in lime kiln when NOx removal from 50 % to 70 % is required in case primary methods are already in use or cannot be applied. In higher removal cases ammonia slip is an issue in SNCR. By using SCR better NOx reduction can be achieved but issues with catalyst materials are expected to arise because of the dust and sulphur dioxide which leads to catalyst poison formation in lower flue gas temperatures. NOx scrubbing has potential when simultaneous NOx and SO2 removal is required. The challenge is that NO cannot be scrubbed directly, but once it is oxidized to NO2 or further scrubbing can be performed as the solubility of NO2 is higher. Commercial installations have not been made regarding SNCR, SCR or NOx scrubbing regarding rotary lime kiln. For SNCR and SCR the closest references come from cement industry.