918 resultados para clear air turbulence
Resumo:
Nasal mucociliary system is the first line of defense of the upper airways and may be affected acutely by exposure to particulate matter (PM) from biomass burning. Several epidemiologic studies have demonstrated a consistent association between levels of air pollution from biomass burning with increases in hospitalization for respiratory diseases and mortality. To determine the acute effects of exposure to particulate matter from biomass burning in nasal mucociliary transport by saccharin transit time (STT) test, we studied thirty-three non-smokers and twelve light smokers sugarcane cutters in two periods: pre-harvest season and 4 h after harvest at the first day after biomass burning. Lung function, exhaled carbon monoxide (CO), nasal symptoms questionnaire and mucociliary clearance (MC) were assessed. Exhaled CO was increased in smokers compared to non-smokers but did not change significantly after harvest. In contrast, SIT was similar between smokers and non-smokers and decreased significantly after harvest in both groups (p < 0.001). Exposure to PM from biomass burning did not influence nasal symptoms. Our results suggest that acute exposure to particulate matter from sugarcane burned affects mucociliary clearance in smokers and non-smokers workers in the absence of symptoms. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Hybrid photocatalysts based on an adsorbent SiMgOx and a photocatalyst TiO(2) were developed in a plate shape. The ceramic surface was coated with TiO(2) by the slip-casting technique. The effect of the support in the photocatalytic degradation of trichloroethylene (TCE) was analyzed by modifying TiO(2) loading and the layer thickness. Photocatalysts were characterised by N(2) adsorption-desorption, mercury intrusion porosimetry, SEM, UV-vis spectroscopy and XRD. A direct relationship between the TiO(2) content and the photocatalytic activity was observed up to three layers of TiO(2) (0.66 wt.%). Our results indicate that intermediate species generated on the TiO(2) layer can migrate through relatively long distances to react with the OH(-) surface groups of the support. By increasing the TiO(2) loading of the photocatalyst two effects were observed: trichloroethylene conversion is enhanced, while the efficiency of the oxidation process is decreased at expenses of increasing the selectivity to COCl(2) and dichloroacetylchloride (DCAC). The results are discussed in terms of the layer thickness, TiO(2) amount, TCE conversion and CO(2), and COCl(2) selectivity. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Curaua fibers were treated with ionized air to improve the fiber/phenolic matrix adhesion.The treatment with ionized air did not change the thermal stability of the fibers. The impact strength increased with increase in the fiber treatment time. SEM micrographs of the fibers showed that the ionized air treatment led to separation of the fiber bundles. Treatment for 12 h also caused a partial degradation of the fibers, which prompted the matrix to transfer the load to a poorer reinforcing agent during impact, thereby decreasing the impact strength of the related composite. The composites reinforced with fibers treated with ionized air absorbed less water than those reinforced with untreated fibers.
Resumo:
A student from the New York Trade School in the Air Conditioning and Refrigeration Dept. looks at plans on top of a building. Black and white photograph contains some damage from adhesive and writing on the front.
Resumo:
This black and white photograph shows classroom space of the Air Conditioning/Refrigeration Dept. empty of students. Black and white photograph.
Resumo:
Students in the Air Conditioning/Refrigeration Dept. of the New York Trade School are shown hard at work in the classroom. Notice the sign at the rear of the room that reads "Watch Out for Pipes on Floor." Black and white photograph.
Resumo:
This shows three students working on a unit in the Air Conditioning and Refrigeration Department of the New York Trade School. Black and white photograph.
Resumo:
Students are shown working in the drafting section of the Air Conditioning Department of the New York Trade School. Black and white photograph that has some damage around the edges.
Resumo:
Four students from the New York Trade School are pictured working on an air conditioning unit. Photograph is black and white.
Resumo:
In this thesis, one of the current control algorithms for the R744 cycle, which tries tooptimize the performance of the system by two SISO control loops, is compared to acost-effective system with just one actuator. The operation of a key component of thissystem, a two stage orifice expansion valve is examined in a range of typical climateconditions. One alternative control loop for this system, which has been proposed byBehr group, is also scrutinized.The simulation results affirm the preference of using two control-loops instead of oneloop, but refute advantages of the Behr alternate control approach against one-loopcontrol. As far as the economic considerations of the A/C unit are concerned, usinga two-stage orifice expansion valve is desired by the automotive industry, thus basedon the experiment results, an improved logic for control of this system is proposed.In the second part, it is investigated whether the one-actuator control approach isapplicable to a system consisting of two parallel evaporators to allow passengers tocontrol different climate zones. The simulation results show that in the case of usinga two-stage orifice valve for the front evaporator and a fixed expansion valve forthe rear one, a proper distribution of the cooling power between the front and rearcompartment is possible for a broad range of climate conditions.
Resumo:
This report describes the work done creating a computer model of a kombi tank from Consolar. The model was created with Presim/Trnsys and Fittrn and DF were used to identify the parameters. Measurements were carried out and were used to identify the values of the parameters in the model. The identifications were first done for every circuit separately. After that, all parameters are normally identified together using all the measurements. Finally the model should be compared with other measurements, preferable realistic ones. The two last steps have not yet been carried out, because of problems finding a good model for the domestic hot water circuit.The model of the domestic hot water circuit give relatively good results for low flows at 5 l/min, but is not good for higher flows. In the report suggestions for improving the model are given. However, there was not enough time to test this within the project as much time was spent trying to solve problems with the model crashing. Suggestions for improving the model for the domestic circuit are given in chapter 4.4. The improved equations that are to be used in the improved model are given by equation 4.18, 4.19 and 4.22.Also for the boiler circuit and the solar circuit there are improvements that can be done. The model presented here has a few shortcomings, but with some extra work, an improved model can be created. In the attachment (Bilaga 1) is a description of the used model and all the identified parameters.A qualitative assessment of the store was also performed based on the measurements and the modelling carried out. The following summary of this can be given: Hot Water PreparationThe principle for controlling the flow on the primary side seems to work well in order to achieve good stratification. Temperatures in the bottom of the store after a short use of hot water, at a coldwater temperature of 12°C, was around 28-30°C. This was almost independent of the temperature in the store and the DHW-flow.The measured UA-values of the heat exchangers are not very reliable, but indicates that the heat transfer rates are much better than for the Conus 500, and in the same range as for other stores tested at SERC.The function of the mixing valve is not perfect (see diagram 4.3, where Tout1 is the outlet hot water temperature, and Tdhwo and Tdhw1 is the inlet temperature to the hot and cold side of the valve respectively). The outlet temperature varies a lot with different temperatures in the storage and is going down from 61°C to 47°C before the cold port is fully closed. This gives a problem to find a suitable temperature setting and gives also a risk that the auxiliary heating is increased instead of the set temperature of the valve, when the hot water temperature is to low.Collector circuitThe UA-value of the collector heat exchanger is much higher than the value for Conus 500, and in the same range as the heat exchangers in other stores tested at SERC.Boiler circuitThe valve in the boiler circuit is used to supply water from the boiler at two different heights, depending on the temperature of the water. At temperatures from the boiler above 58.2°C, all the water is injected to the upper inlet. At temperatures below 53.9°C all the water is injected to the lower inlet. At 56°C the water flow is equally divided between the two inlets. Detailed studies of the behaviour at the upper inlet shows that better accuracy of the model would have been achieved using three double ports in the model instead of two. The shape of the upper inlet makes turbulence, that could be modelled using two different inlets. Heat lossesThe heat losses per m3 are much smaller for the Solus 1050, than for the Conus 500 Storage. However, they are higher than those for some good stores tested at SERC. The pipes that are penetrating the insulation give air leakage and cold bridges, which could be a major part of the losses from the storage. The identified losses from the bottom of the storage are exceptionally high, but have less importance for the heat losses, due to the lower temperatures in the bottom. High losses from the bottom can be caused by air leakage through the insulation at the pipe connections of the storage.
Resumo:
In this project, Stora Enso’s newly developed building system has been further developed to allow building to the Swedish passive house standard for the Swedish climate. The building system is based on a building framework of CLT (Cross laminated timber) boards. The concept has been tested on a small test building. The experience gained from this test building has also been used for planning a larger building (two storeys with the option of a third storey) with passive house standard with this building system. The main conclusions from the project are: It is possible to build airtight buildings with this technique without using traditional vapour barriers. Initial measurements show that this can be done without reaching critical humidity levels in the walls and roof, at least where wood fibre insulation is used, as this has a greater capacity for storing and evening out the moisture than mineral wool. However, the test building has so far not been exposed to internal generation of moisture (added moisture from showers, food preparation etc.). This needs to be investigated and this will be done during the winter 2013-14. A new fixing method for doors and windows has been tested without traditional fibre filling between them and the CLT panel. The door or window is pressed directly on to the CLT panel instead, with an expandable sealing strip between them. This has been proved to be successful. The air tightness between the CLT panels is achieved with expandable sealing strips between the panels. The position of the sealing strips is important, both for the air tightness itself and to allow rational assembly. Recurrent air tightness measurements show that the air tightness decreased somewhat during the first six months, but not to such an extent that the passive house criteria were not fulfilled. The reason for the decreased air tightness is not clear, but can be due to small movements in the CLT construction and also to the sealing strips being affected by changing outdoor temperatures. Long term measurements (at least two years) have to be carried out before more reliable conclusions can be drawn regarding the long term effect of the construction on air tightness and humidity in the walls. An economic analysis comparing using a concrete frame or the studied CLT frame for a three storey building shows that it is probably more expensive to build with CLT. For buildings higher than three floors, the CLT frame has economic advantages, mainly because of the shorter building time compared to using concrete for the frame. In this analysis, no considerations have been taken to differences in the influence on the environment or the global climate between the two construction methods.
Resumo:
The paper analyses empirical performance data of five commercial PV-plants in Germany. The purpose was on one side to investigate the weak light performance of the different PV-modules used. On the other hand it was to quantify and compare the shading losses of different PV-array configurations. The importance of this study relies on the fact that even if the behavior under weak light conditions or the shading losses might seem to be a relatively small percentage of the total yearly output; in projects where a performance guarantee is given, these variation can make the difference between meeting or not the conditions.When analyzing the data, a high dispersion was found. To reduce the optical losses and spectral effects, a series of data filters were applied based on the angle of incidence and absolute Air Mass. To compensate for the temperature effects and translate the values to STC (25°C), five different methods were assessed. At the end, the Procedure 2 of IEC 60891 was selected due to its relative simplicity, usage of mostly standard parameters found in datasheets, good accuracy even with missing values, and its potential to improve the results when the complete set of inputs is available.After analyzing the data, the weak light performance of the modules did not show a clear superiority of a certain technology or technology group over the others. Moreover, the uncertainties in the measurements restrictive the conclusiveness of the results.In the partial shading analysis, the landscape mounting of mc-Si PV-modules in free-field showed a significantly better performance than the portrait one. The cross-table string using CIGS modules did not proved the benefits expected and performed actually poorer than a regular one-string-per-table layout. Parallel substrings with CdTe showed a proper functioning and relatively low losses. Among the two product generations of CdTe analyzed, none showed a significantly better performance under partial shadings.
Resumo:
This thesis focuses on using photovoltaic produced electricity to power air conditioners in a tropical climate. The study takes place in Surabaya, Indonesia at two different locations the classroom, located at the UBAYA campus and the home office, 10 km away. Indonesia has an average solar irradiation of about 4.8 kWh/m²/day (PWC Indonesia, 2013) which is for ideal conditions for these tests. At the home office, tests were conducted on different photovoltaic systems. A series of measuring devices recorded the performance of the 800 W PV system and the consumption of the 1.35 kW air conditioner (cooling capacity). To have an off grid system many of the components need to be oversized. The inverter has to be oversized to meet the startup load of the air conditioner, which can be 3 to 8 times the operating power (Rozenblat, 2013). High energy consumption of the air conditioner would require a large battery storage to provide one day of autonomy. The PV systems output must at least match the consumption of the air conditioner. A grid connect system provides a much better solution with the 800 W PV system providing 80 % of the 3.5 kWh load of the air conditioner, the other 20 % coming from the grid during periods of low irradiation. In this system the startup load is provided by the grid so the inverter does not need to be oversized. With the grid-connected system, the PV panel’s production does not need to match the consumption of the air conditioner, although a smaller PV array will mean a smaller percentage of the load will be covered by PV. Using the results from the home office tests and results from measurements made in the classroom. Two different PV systems (8 kW and 12 kW) were simulated to power both the current air conditioners (COP 2.78) and new air conditioners (COP 4.0). The payback period of the systems can vary greatly depending on if a feed in tariff is awarded or not. If the feed in tariff is awarded the best system is the 12 kW system, with a payback period of 4.3 years and a levelized cost of energy at -3,334 IDR/kWh. If the feed in tariff is not granted then the 8 kW system is the best choice with a lower payback period and lower levelized cost of energy than the 12 kW system under the same conditions.