967 resultados para classification models


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper compares the forecasting performance of different models which have been proposed for forecasting in the presence of structural breaks. These models differ in their treatment of the break process, the parameters defining the model which applies in each regime and the out-of-sample probability of a break occurring. In an extensive empirical evaluation involving many important macroeconomic time series, we demonstrate the presence of structural breaks and their importance for forecasting in the vast majority of cases. However, we find no single forecasting model consistently works best in the presence of structural breaks. In many cases, the formal modeling of the break process is important in achieving good forecast performance. However, there are also many cases where simple, rolling OLS forecasts perform well.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Block factor methods offer an attractive approach to forecasting with many predictors. These extract the information in these predictors into factors reflecting different blocks of variables (e.g. a price block, a housing block, a financial block, etc.). However, a forecasting model which simply includes all blocks as predictors risks being over-parameterized. Thus, it is desirable to use a methodology which allows for different parsimonious forecasting models to hold at different points in time. In this paper, we use dynamic model averaging and dynamic model selection to achieve this goal. These methods automatically alter the weights attached to different forecasting model as evidence comes in about which has forecast well in the recent past. In an empirical study involving forecasting output and inflation using 139 UK monthly time series variables, we find that the set of predictors changes substantially over time. Furthermore, our results show that dynamic model averaging and model selection can greatly improve forecast performance relative to traditional forecasting methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spatial heterogeneity, spatial dependence and spatial scale constitute key features of spatial analysis of housing markets. However, the common practice of modelling spatial dependence as being generated by spatial interactions through a known spatial weights matrix is often not satisfactory. While existing estimators of spatial weights matrices are based on repeat sales or panel data, this paper takes this approach to a cross-section setting. Specifically, based on an a priori definition of housing submarkets and the assumption of a multifactor model, we develop maximum likelihood methodology to estimate hedonic models that facilitate understanding of both spatial heterogeneity and spatial interactions. The methodology, based on statistical orthogonal factor analysis, is applied to the urban housing market of Aveiro, Portugal at two different spatial scales.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The authors investigated the dimensionality of the French version of the Rosenberg Self-Esteem Scale (RSES; Rosenberg, 1965) using confirmatory factor analysis. We tested models of 1 or 2 factors. Results suggest the RSES is a 1-dimensional scale with 3 highly correlated items. Comparison with the Revised NEO-Personality Inventory (NEO-PI-R; Costa, McCrae, & Rolland, 1998) demonstrated that Neuroticism correlated strongly and Extraversion and Conscientiousness moderately with the RSES. Depression accounted for 47% of the variance of the RSES. Other NEO-PI-R facets were also moderately related with self-esteem.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper examines both the in-sample and out-of-sample performance of three monetary fundamental models of exchange rates and compares their out-of-sample performance to that of a simple Random Walk model. Using a data-set consisting of five currencies at monthly frequency over the period January 1980 to December 2009 and a battery of newly developed performance measures, the paper shows that monetary models do better (in-sample and out-of-sample forecasting) than a simple Random Walk model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper considers the lag structures of dynamic models in economics, arguing that the standard approach is too simple to capture the complexity of actual lag structures arising, for example, from production and investment decisions. It is argued that recent (1990s) developments in the the theory of functional differential equations provide a means to analyse models with generalised lag structures. The stability and asymptotic stability of two growth models with generalised lag structures are analysed. The paper concludes with some speculative discussion of time-varying parameters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a stylized intertemporal forward-looking model able that accommodates key regional economic features, an area where the literature is not well developed. The main difference, from the standard applications, is the role of saving and its implication for the balance of payments. Though maintaining dynamic forward-looking behaviour for agents, the rate of private saving is exogenously determined and so no neoclassical financial adjustment is needed. Also, we focus on the similarities and the differences between myopic and forward-looking models, highlighting the divergences among the main adjustment equations and the resulting simulation outcomes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: Bioaerosols and their constituents, such as endotoxins, are capable of causing an inflammatory reaction at the level of the lung-blood barrier, which becomes more permeable. Thus, it was hypothesized that occupational exposure to bioaerosols can increase leakage of surfactant protein-D (SP-D), a lung-specific protein, into the bloodstream. METHODS: SP-D was determined by ELISA in 316 wastewater workers, 67 garbage collectors, and 395 control subjects. Exposure was assessed with four interview-based indicators and by preliminary endotoxin measurements using the Limulus amoebocyte lysate assay. Influence of exposure on serum SP-D was assessed by multiple linear regression considering smoking, glomerular function, lung diseases, obesity, and other confounders. RESULTS: Overall, mean exposure levels to endotoxins were below 100 EU/m(3). However, special tasks of wastewater workers caused higher endotoxin exposure. SP-D concentration was slightly increased in this occupational group and associated with the occurrence of splashes and contact to raw sewage. No effect was found in garbage collectors. Smoking increased serum SP-D. No clinically relevant correlation between spirometry results and SP-D concentrations appeared. CONCLUSIONS: These results support the hypothesis that inhalation of bioaerosols, even at low concentrations, has a subclinical effect on the lung-blood barrier, the permeability of which increases without associated spirometric changes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Faced with the problem of pricing complex contingent claims, an investor seeks to make his valuations robust to model uncertainty. We construct a notion of a model- uncertainty-induced utility function and show that model uncertainty increases the investor's eff ective risk aversion. Using the model-uncertainty-induced utility function, we extend the \No Good Deals" methodology of Cochrane and Sa a-Requejo [2000] to compute lower and upper good deal bounds in the presence of model uncertainty. We illustrate the methodology using some numerical examples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we examine the out-of-sample forecast performance of high-yield credit spreads regarding real-time and revised data on employment and industrial production in the US. We evaluate models using both a point forecast and a probability forecast exercise. Our main findings suggest the use of few factors obtained by pooling information from a number of sector-specific high-yield credit spreads. This can be justified by observing that, especially for employment, there is a gain from using a principal components model fitted to high-yield credit spreads compared to the prediction produced by benchmarks, such as an AR, and ARDL models that use either the term spread or the aggregate high-yield spread as exogenous regressor. Moreover, forecasts based on real-time data are generally comparable to forecasts based on revised data. JEL Classification: C22; C53; E32 Keywords: Credit spreads; Principal components; Forecasting; Real-time data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AIMS/HYPOTHESIS: MicroRNAs are key regulators of gene expression involved in health and disease. The goal of our study was to investigate the global changes in beta cell microRNA expression occurring in two models of obesity-associated type 2 diabetes and to assess their potential contribution to the development of the disease. METHODS: MicroRNA profiling of pancreatic islets isolated from prediabetic and diabetic db/db mice and from mice fed a high-fat diet was performed by microarray. The functional impact of the changes in microRNA expression was assessed by reproducing them in vitro in primary rat and human beta cells. RESULTS: MicroRNAs differentially expressed in both models of obesity-associated type 2 diabetes fall into two distinct categories. A group including miR-132, miR-184 and miR-338-3p displays expression changes occurring long before the onset of diabetes. Functional studies indicate that these expression changes have positive effects on beta cell activities and mass. In contrast, modifications in the levels of miR-34a, miR-146a, miR-199a-3p, miR-203, miR-210 and miR-383 primarily occur in diabetic mice and result in increased beta cell apoptosis. These results indicate that obesity and insulin resistance trigger adaptations in the levels of particular microRNAs to allow sustained beta cell function, and that additional microRNA deregulation negatively impacting on insulin-secreting cells may cause beta cell demise and diabetes manifestation. CONCLUSIONS/INTERPRETATION: We propose that maintenance of blood glucose homeostasis or progression toward glucose intolerance and type 2 diabetes may be determined by the balance between expression changes of particular microRNAs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The empirical finding of an inverse U-shaped relationship between per capita income and pollution, the so-called Environmental Kuznets Curve (EKC), suggests that as countries experience economic growth, environmental deterioration decelerates and thus becomes less of an issue. Focusing on the prime example of carbon emissions, the present article provides a critical review of the new econometric techniques that have questioned the baseline polynomial specification in the EKC literature. We discuss issues related to the functional form, heterogeneity, “spurious” regressions and spatial dependence to address whether and to what extent the EKC can be observed. Despite these new approaches, there is still no clear-cut evidence supporting the existence of the EKC for carbon emissions. JEL classifications: C20; Q32; Q50; O13 Keywords: Environmental Kuznets Curve; Carbon emissions; Functional form; Heterogeneity; “Spurious” regressions; Spatial dependence.Residential satisfaction is often used as a barometer to assess the performance of public policy and programmes designed to raise individuals' well-being. However, the fact that responses elicited from residents might be biased by subjective, non-observable factors casts doubt on whether these responses can be taken as trustable indicators of the individuals' housing situation. Emotional factors such as aspirations or expectations might affect individuals' cognitions of their true residential situation. To disentangle this puzzle, we investigated whether identical residential attributes can be perceived differently depending on tenure status. Our results indicate that tenure status is crucial not only in determining the level of housing satisfaction, but also regarding how dwellers perceive their housing characteristics. Keywords: Housing satisfaction, subjective well-being, homeownership. JEL classification: D1, R2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper investigates the usefulness of switching Gaussian state space models as a tool for implementing dynamic model selecting (DMS) or averaging (DMA) in time-varying parameter regression models. DMS methods allow for model switching, where a different model can be chosen at each point in time. Thus, they allow for the explanatory variables in the time-varying parameter regression model to change over time. DMA will carry out model averaging in a time-varying manner. We compare our exact approach to DMA/DMS to a popular existing procedure which relies on the use of forgetting factor approximations. In an application, we use DMS to select different predictors in an in ation forecasting application. We also compare different ways of implementing DMA/DMS and investigate whether they lead to similar results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We develop methods for Bayesian model averaging (BMA) or selection (BMS) in Panel Vector Autoregressions (PVARs). Our approach allows us to select between or average over all possible combinations of restricted PVARs where the restrictions involve interdependencies between and heterogeneities across cross-sectional units. The resulting BMA framework can find a parsimonious PVAR specification, thus dealing with overparameterization concerns. We use these methods in an application involving the euro area sovereign debt crisis and show that our methods perform better than alternatives. Our findings contradict a simple view of the sovereign debt crisis which divides the euro zone into groups of core and peripheral countries and worries about financial contagion within the latter group.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We develop methods for Bayesian model averaging (BMA) or selection (BMS) in Panel Vector Autoregressions (PVARs). Our approach allows us to select between or average over all possible combinations of restricted PVARs where the restrictions involve interdependencies between and heterogeneities across cross-sectional units. The resulting BMA framework can find a parsimonious PVAR specification, thus dealing with overparameterization concerns. We use these methods in an application involving the euro area sovereign debt crisis and show that our methods perform better than alternatives. Our findings contradict a simple view of the sovereign debt crisis which divides the euro zone into groups of core and peripheral countries and worries about financial contagion within the latter group.