945 resultados para chlorine decay
Resumo:
The mean duration of a lightning flash is observed to exhibit systematic variation with the growth and decay of the activity of a thundercloud and reaches a minimum value when the radio noise level and rate of flashing are at their maximum values.
Resumo:
We present a search for WW and WZ production in final states that contain a charged lepton (electron or muon) and at least two jets, produced in sqrt(s) = 1.96 TeV ppbar collisions at the Fermilab Tevatron, using data corresponding to 1.2 fb-1 of integrated luminosity collected with the CDF II detector. Diboson production in this decay channel has yet to be observed at hadron colliders due to the large single W plus jets background. An artificial neural network has been developed to increase signal sensitivity, as compared with an event selection based on conventional cuts. We set a 95% confidence level upper limit of sigma_{WW}* BR(W->lnu,W->jets)+ sigma_{WZ}*BR(W->lnu,Z->jets)
Resumo:
We report on a search for the supersymmetric partner of the bottom quark produced from gluino decays in data from 2.5 fb-1 of integrated luminosity collected by the Collider Detector at Fermilab at sqrt(s)=1.96 TeV. Candidate events are selected requiring two or more jets and large missing transverse energy. At least two of the jets are required to be tagged as originating from a b quark to enhance the sensitivity. The results are in good agreement with the prediction of the standard model processes, giving no evidence for gluino decay to sbottom quarks. This result constrains the gluino-pair-production cross section to be less than 40fb at 95% credibility level for a gluino mass of 350 GeV.
Resumo:
We present an analysis of the mass of the X(3872) reconstructed via its decay to J/psi pi+ pi- using 2.4 fb^-1 of integrated luminosity from ppbar collisions at sqrt(s) = 1.96 TeV, collected with the CDF II detector at the Fermilab Tevatron. The possible existence of two nearby mass states is investigated. Within the limits of our experimental resolution the data are consistent with a single state, and having no evidence for two states we set upper limits on the mass difference between two hypothetical states for different assumed ratios of contributions to the observed peak. For equal contributions, the 95% confidence level upper limit on the mass difference is 3.6 MeV/c^2. Under the single-state model the X(3872) mass is measured to be 3871.61 +- 0.16 (stat) +- 0.19 (syst) MeV/c^2, which is the most precise determination to date.
First simultaneous measurement of the top quark mass in the lepton+jets and dilepton channels at CDF
Resumo:
We present a measurement of the mass of the top quark using data corresponding to an integrated luminosity of 1.9fb^-1 of ppbar collisions collected at sqrt{s}=1.96 TeV with the CDF II detector at Fermilab's Tevatron. This is the first measurement of the top quark mass using top-antitop pair candidate events in the lepton + jets and dilepton decay channels simultaneously. We reconstruct two observables in each channel and use a non-parametric kernel density estimation technique to derive two-dimensional probability density functions from simulated signal and background samples. The observables are the top quark mass and the invariant mass of two jets from the W decay in the lepton + jets channel, and the top quark mass and the scalar sum of transverse energy of the event in the dilepton channel. We perform a simultaneous fit for the top quark mass and the jet energy scale, which is constrained in situ by the hadronic W boson mass. Using 332 lepton + jets candidate events and 144 dilepton candidate events, we measure the top quark mass to be mtop=171.9 +/- 1.7 (stat. + JES) +/- 1.1 (syst.) GeV/c^2 = 171.9 +/- 2.0 GeV/c^2.
Resumo:
This paper reports a measurement of the cross section for the pair production of top quarks in ppbar collisions at sqrt(s) = 1.96 TeV at the Fermilab Tevatron. The data was collected from the CDF II detector in a set of runs with a total integrated luminosity of 1.1 fb^{-1}. The cross section is measured in the dilepton channel, the subset of ttbar events in which both top quarks decay through t -> Wb -> l nu b where l = e, mu, or tau. The lepton pair is reconstructed as one identified electron or muon and one isolated track. The use of an isolated track to identify the second lepton increases the ttbar acceptance, particularly for the case in which one W decays as W -> tau nu. The purity of the sample may be further improved at the cost of a reduction in the number of signal events, by requiring an identified b-jet. We present the results of measurements performed with and without the request of an identified b-jet. The former is the first published CDF result for which a b-jet requirement is added to the dilepton selection. In the CDF data there are 129 pretag lepton + track candidate events, of which 69 are tagged. With the tagging information, the sample is divided into tagged and untagged sub-samples, and a combined cross section is calculated by maximizing a likelihood. The result is sigma_{ttbar} = 9.6 +/- 1.2 (stat.) -0.5 +0.6 (sys.) +/- 0.6 (lum.) pb, assuming a branching ratio of BR(W -> ell nu) = 10.8% and a top mass of m_t = 175 GeV/c^2.
Resumo:
A combined mass and particle identification fit is used to make the first observation of the decay Bs --> Ds K and measure the branching fraction of Bs --> Ds K relative to Bs --> Ds pi. This analysis uses 1.2 fb^-1 integrated luminosity of pbar-p collisions at sqrt(s) = 1.96 TeV collected with the CDF II detector at the Fermilab Tevatron collider. We observe a Bs --> Ds K signal with a statistical significance of 8.1 sigma and measure Br(Bs --> Ds K)/Br(Bs --> Ds pi) = 0.097 +- 0.018(stat) +- 0.009(sys).
Resumo:
We have measured the differential cross section for the inclusive production of psi(2S) mesons decaying to mu^{+} mu^{-1} that were produced in prompt or B-decay processes from ppbar collisions at 1.96 TeV. These measurements have been made using a data set from an integrated luminosity of 1.1 fb^{-1} collected by the CDF II detector at Fermilab. For events with transverse momentum p_{T} (psi(2S)) > 2 GeV/c and rapidity |y(psi(2S))| psi(2S)X) Br(psi(2S) -> mu^{+} mu^{-}) to be 3.29 +- 0.04(stat.) +- 0.32(syst.) nb.
Resumo:
We report a search for narrow resonances, produced in $p\bar{p}$ collisions at $\sqrt{s}=1.96$ TeV, that decay into muon pairs with invariant mass between 6.3 and 9.0 GeV/c^2. The data, collected with the CDF~II detector at the Fermilab Tevatron collider, correspond to an integrated luminosity of 630 pb$^{-1}$. We use the dimuon invariant mass distribution to set 90% upper credible limits of about 1% to the ratio of the production cross section times muonic branching fraction of possible narrow resonances to that of the $\Upsilon(1{\rm S})$ meson.
Resumo:
We present a search for the standard model Higgs boson produced with a Z boson in 4.1 fb^-1 of data collected with the CDF II detector at the Tevatron. In events consistent with the decay of the Higgs boson to a bottom-quark pair and the Z boson to electrons or muons, we set 95% credibility level upper limits on the ZH production cross section times the H -> b bbar branching ratio. Improved analysis methods enhance signal sensitivity by 20% relative to previous searches beyond the gain due to the larger data sample. At a Higgs boson mass of 115 GeV/c^2 we set a limit of 5.9 times the standard model value.
Resumo:
We present three measurements of the top-quark mass in the lepton plus jets channel with approximately 1.9 fb-1 of integrated luminosity collected with the CDF II detector using quantities with minimal dependence on the jet energy scale. One measurement exploits the transverse decay length of b-tagged jets to determine a top-quark mass of 166.9+9.5-8.5 (stat) +/- 2.9 (syst) GeV/c2, and another the transverse momentum of electrons and muons from W-boson decays to determine a top-quark mass of 173.5+8.8-8.9 (stat) +/- 3.8 (syst) GeV/c2. These quantities are combined in a third, simultaneous mass measurement to determine a top-quark mass of 170.7 +/- 6.3 (stat) +/- 2.6 (syst) GeV/c2.
Resumo:
We report a measurement of the production cross section for b hadrons in pp̅ collisions at √s=1.96 TeV. Using a data sample derived from an integrated luminosity of 83 pb-1 collected with the upgraded Collider Detector (CDF II) at the Fermilab Tevatron, we analyze b hadrons, Hb, partially reconstructed in the semileptonic decay mode Hb→μ-D0X. Our measurement of the inclusive production cross section for b hadrons with transverse momentum pT>9 GeV/c and rapidity |y|<0.6 is σ=1.30 μb±0.05 μb(stat)±0.14 μb(syst)±0.07 μb(B), where the uncertainties are statistical, systematic, and from branching fractions, respectively. The differential cross sections dσ/dpT are found to be in good agreement with recent measurements of the Hb cross section and well described by fixed-order next-to-leading logarithm predictions.
Resumo:
We present a measurement of the tt̅ production cross section in pp̅ collisions at √s=1.96 TeV using events containing a high transverse momentum electron or muon, three or more jets, and missing transverse energy. Events consistent with tt̅ decay are found by identifying jets containing candidate heavy-flavor semileptonic decays to muons. The measurement uses a CDF run II data sample corresponding to 2 fb-1 of integrated luminosity. Based on 248 candidate events with three or more jets and an expected background of 79.5±5.3 events, we measure a production cross section of 9.1±1.6 pb.
Resumo:
We present a measurement of the top quark mass in the all-hadronic channel (\tt $\to$ \bb$q_{1}\bar{q_{2}}q_{3}\bar{q_{4}}$) using 943 pb$^{-1}$ of \ppbar collisions at $\sqrt {s} = 1.96$ TeV collected at the CDF II detector at Fermilab (CDF). We apply the standard model production and decay matrix-element (ME) to $\ttbar$ candidate events. We calculate per-event probability densities according to the ME calculation and construct template models of signal and background. The scale of the jet energy is calibrated using additional templates formed with the invariant mass of pairs of jets. These templates form an overall likelihood function that depends on the top quark mass and on the jet energy scale (JES). We estimate both by maximizing this function. Given 72 observed events, we measure a top quark mass of 171.1 $\pm$ 3.7 (stat.+JES) $\pm$ 2.1 (syst.) GeV/$c^{2}$. The combined uncertainty on the top quark mass is 4.3 GeV/$c^{2}$.
Resumo:
We report the observation of the bottom, doubly-strange baryon Omega^-_b through the decay chain Omega^-_b -> J/psi Omega^-, where J/psi -> mu^+ mu^-, Omega^- -> Lambda K^-, and Lambda -> p pi^-, using 4.2 fb^{-1} of data from p\bar p collisions at sqrt{s}=1.96 TeV, and recorded with the Collider Detector at Fermilab. A signal is observed whose probability of arising from a background fluctuation is 4.0 * 10^{-8}, or 5.5 Gaussian standard deviations. The Omega^-_b mass is measured to be 6054.4 +/- 6.8 (stat.) +/- 0.9 (syst.) MeV/c^2. The lifetime of the Omega^-_b baryon is measured to be 1.13^{+0.53}_{-0.40}(stat.) +/- 0.02(syst.)$ ps. In addition, for the \Xi^-_b baryon we measure a mass of 5790.9 +/- 2.6(stat.) +/- 0.8(syst.) MeV/c^2 and a lifetime of 1.56^{+0.27}_{-0.25}(stat.) +/-0.02(syst.) ps. Under the assumption that the \Xi_b^- and \Omega_b^- are produced with similar kinematic distributions to the \Lambda^0_b baryon, we find sigma(Xi_b^-) B(Xi_b^- -> J/psi Xi^-)}/ sigma(Lambda^0_b) B(Lambda^0_b -> J/psi Lambda)} = 0.167^{+0.037}_{-0.025}(stat.) +/-0.012(syst.) and sigma(Omega_b^-) B(Omega_b^- -> J/psi Omega^-)/ sigma(Lambda^0_b) B(Lambda^0_b -> J/psi Lambda)} = 0.045^{+0.017}_{-0.012}(stat.) +/- 0.004(syst.) for baryons produced with transverse momentum in the range of 6-20 GeV/c.