926 resultados para cavitazione Rayleigh-Plesset Merkle Kunz OpenFOAM CFD iniettore Pimple
Resumo:
In this paper, we engage a Lagrangian, particle-based CFD method, named Smoothed Particle Hydrodynamic (SPH) to study the solitary wave motion and its impact on coastal structures. Two-dimensional weakly compressible and incompressible SPH models were applied to simulate wave impacting on seawall and schematic coastal house. The results confirmed the accuracy of both models for predicting the wave surface profiles. The incompressible SPH model performed better in predicting the pressure field and impact loadings on coastal structures than the weakly compressible SPH model. The results are in qualitatively agreement with experimental results. Copyright © 2011 by the International Society of Offshore and Polar Engineers (ISOPE).
Resumo:
The operation of dynamical systems in harsh environments requires continuous monitoring. Internal sensors may be used to monitor the conditions in real time. A typical example is the sensor and electronic components used in space structures which, especially during launch, are subject to huge g force. The paper will present an experimental and theoretical study on a simplified model used to analyze the possible cause of high acceleration on the enclosed sensors and equipments due to impulsive loading. The model system consists of two beams coupled using compliant connections. An impulse hammer excites one beam, and vibrations are transmitted to the indirectly driven beam. A theoretical model is developed using a Rayleigh-Ritz approach and validated using experimental results in both the frequency and time domains. Monto Carlo simulation was done with random masses positioned on the indirectly driven beam to determine the worst-case conditions for maximum peak acceleration. Highest acceleration levels were found when mode matching in the two beams led to veering behavior in the coupled modes. The results suggest guidelines for the detailed design of internal components of a structure exposed to shock loading from its environment. [The authors thank Schlumberger Cambridge Research for financial support.].
Resumo:
This paper considers the aerodynamic design optimisation of turbomachinery blades from a multi-objective perspective. The aim is to improve the performance of a specific stage and eventually of the whole engine. The integrated system developed for this purpose is described. It combines an existing geometry parameterisation scheme, a well-established CFD package and a novel multi-objective variant of the Tabu Search optimisation algorithm. Its performance is illustrated through a case study in which the flow characteristics most important to the overall performance of turbomachinery blades are optimised.
Application of scalar dissipation rate modelling to industrial burners in partially premixed regimes
Resumo:
The objective of this paper is to test various available turbulent burning velocity models on an experimental version of Siemens small scale combustor using the commercial CFD code. Failure of burning velocity model with different expressions for turbulent burning velocity is observed with an unphysical flame flashback into the swirler. Eddy Dissipation Model/Finite Rate Chemistry is found to over-predict mean temperature and species concentrations. Solving for reaction progress equation with its variance using scalar dissipation rate modelling produced reasonably good agreement with the available experimental data. Two different turbulence models Shear Stress Transport (SST) and Scale Adaptive Simulation (SAS) SST are tested and results from transient SST simulations are observed to be predicting well. SAS-SST is found to under-predict with temperature and species distribution.
Resumo:
Detailed numerical investigations are undertaken of wavelength reused bidirectional transmission of adaptively modulated optical OFDM (AMOOFDM) signals over a single SMF in a colorless WDM-PON incorporating a semiconductor optical amplifier (SOA) intensity modulator and a reflective SOA (RSOA) intensity modulator in the optical line termination and optical network unit, respectively. A comprehensive theoretical model describing the performance of such network scenarios is, for the first time, developed, taking into account dynamic optical characteristics of SOA and RSOA intensity modulators as well as the effects of Rayleigh backscattering (RB) and residual downstream signal-induced crosstalk. The developed model is rigorously verified experimentally in RSOA-based real-time end-to-end OOFDM systems at 7.5 Gb/s. It is shown that the RB noise and crosstalk effects are dominant factors limiting the maximum achievable downstream and upstream transmission performance. Under optimum SOA and RSOA operating conditions as well as practical downstream and upstream optical launch powers, 10 Gb/s downstream and 6 Gb/s upstream over 40 km SMF transmissions of conventional double sideband AMOOFDM signals are feasible without utilizing in-line optical amplification and chromatic dispersion compensation. In particular, the aforementioned transmission performance can be improved to 23 Gb/s downstream and 8 Gb/s upstream over 40 km SMFs when single sideband subcarrier modulation is adopted in the downstream systems.
Resumo:
Detailed numerical investigations are undertaken of wavelength reused bidirectional transmission of adaptively modulated optical OFDM (AMOOFDM) signals over a single SMF in a WDM-PON incorporating a SOA intensity modulator and a RSOA intensity modulator in the OLT and ONU, respectively. A comprehensive theoretical model describing the performance of such network scenarios is, for the first time, developed, taking into account dynamic optical characteristics of SOA and RSOA intensity modulators as well as the effects of Rayleigh backscattering (RB) and residual downstream signal-induced crosstalk. The developed model is rigorously verified experimentally in RSOA-based real-time end-to-end OOFDM systems at 7.5Gb/s. It is shown that the RB noise and crosstalk effects are the dominant factors limiting the maximum achievable downstream and upstream transmission performance. Under optimum SOA and RSOA operating conditions as well as practical downstream and upstream optical launch powers, 10Gb/s downstream and 6Gb/s upstream over 40km SMF transmissions of conventional double sideband AMOOFDM signals are feasible without utilizing inline optical amplification and chromatic dispersion compensation. In particular, the transmission performance can be improved to 23Gb/s downstream and 8Gb/s upstream over 40 km SMFs when single sideband subcarrier modulation is adopted in the downstream systems. Copyright © 2010 The authors.
Resumo:
The exponential increase of industrial demand in the past two decades has led scientists to the development of alternative technologies for the fast manufacturing of engineering components, aside from standard and time consuming techniques such as casting or forging.Cold Spray (CS) is a newly developed manufacturing technique, based upon the deposition of metal powder on a substrate due to high energy particle impacts. In this process, the powder is accelerated up to considerable speed in a converging-diverging nozzle, typically using air, nitrogen or helium as a carrier gas. Recent developments have demonstrated significant process capabilities, from the building of mold-free 3D shapes made of various metals, to low porosity and corrosion resistant titanium coatings.In CS, the particle stream characteristics during the acceleration process are important in relation to the final geometry of the coating. Experimental studies have shown the tendency of particles to spread over the nozzle acceleration channel, resulting in a wide exit stream and in the difficulty of producing narrow tracks.This paper presents an investigation on the powder stream characteristics in CS supersonic nozzles. The powder insertion location was varied within the carrier gas flow, along with the geometry of the powder injector, in order to identify their relation with particle trajectories. Computational Fluid Dynamics (CFD) results by Fluent v6.3.26 are presented, along with experimental observations. Different configurations were tested and modeled, giving deposited track geometries of copper and tin ranging from 1. mm to 8. mm in width on metal and polymer substrates. © 2011 Elsevier B.V.
Resumo:
The modern CFD process consists of mesh generation, flow solving and post-processing integrated into an automated workflow. During the last several years we have developed and published research aimed at producing a meshing and geometry editing system, implemented in an end-to-end parallel, scalable manner and capable of automatic handling of large scale, real world applications. The particular focus of this paper is the associated unstructured mesh RANS flow solver and the porting of it to GPU architectures. After briefly describing the solver itself, the special issues associated with porting codes using unstructured data structures are discussed - followed by some application examples. Copyright © 2011 by W.N. Dawes.
Guided propagation of surface acoustic waves and piezoelectric field enhancement in ZnO/GaAs systems
Resumo:
The characteristics and dispersion of the distinct surface acoustic waves (SAWs) propagating in ZnO/GaAs heterostructures have been studied experimentally and theoretically. Besides the Rayleigh mode, strong Sezawa modes, which propagate confined in the overlayer, arise due to the smaller sound velocity in ZnO than in the substrate. The design parameters of the structure providing the strongest piezoelectric field at a given depth within the layered system for the different modes have been determined. The piezoelectric field of the Rayleigh mode is shown to be more than 10 times stronger at the interface region of the tailored ZnO/GaAs structure than at the surface region of the bulk GaAs, whereas the same comparison for the first Sezawa mode yields a factor of 2. This enhancement, together with the capacity of selecting waves with different piezoelectric and strain field depth profiles, will facilitate the development of SAW-modulated optoelectronic applications in GaAs-based systems. © 2011 American Institute of Physics.
Resumo:
This paper describes the conceptual ideas, the theoretical validation, the laboratory testing and the field trials of a recently patented fuel-air mixing device for use in high-pressure ratio, low emissions, gaseous-fueled gas turbines. By making the fuel-air mixing process insensitive to pressure fluctuations in the combustion chamber, it is possible to avoid the common problem of positive feedback between mixture strength and the unsteady combustion process. More specifically, a mixing duct has been designed such that fuel-air ratio fluctuations over a wide range of frequencies can be damped out by passive design means. By scaling the design in such a way that the range of damped frequencies covers the frequency spectrum of the acoustic modes in the combustor, the instability mechanism can be removed. After systematic development, this design philosophy was successfully applied to a 35:1 pressure ratio aeroderivative gas turbine yielding very low noise levels and very competitive NOx and CO measurements. The development of the new premixer is described from conceptual origins through analytic and CFD evaluation to laboratory testing and final field trials. Also included in this paper are comments about the practical issues of mixing, flashback resistance and autoignition.
Resumo:
In order to disign an airfoil of which maximum lift coefficient (CL max) is not sensitive to location of forced top boundary layer transition. Taking maximizing mean value of CL max and minimizing standard deviation as biobjective, leading edge radius, manximum thickness and its location, maximum camber and its location as deterministic design variables, location of forced top boundary layer transition as stochastic variable, XFOIL as deterministic CFD solver, non-intrusive polynomial chaos as substitute of Monte Carlo method, we completed a robust airfoil design problem. Results demonstrate performance of initial airfoil is enhanced through reducing standard deviation of CL max. Besides, we also know maximum thickness has the most dominating effect on mean value of CL max, location of maximum thickness has the most dominating effect on standard deviation of CL max, maximum camber has a little effect on both mean value and standard deviation, and maximum camber is the only element of which increase can lead increase of mean value and standard deviation at the same time. Copyright © 2009 by the American Institute of Aeronautics and Astronautics, Inc.
Resumo:
D Liang from Cambridge University explains the shallow water equations and their applications to the dam-break and other steep-fronted flow modeling. They assume that the horizontal scale of the flow is much greater than the vertical scale, which means the flow is restricted within a thin layer, thus the vertical momentum is insignificant and the pressure distribution is hydrostatic. The left hand sides of the two momentum equations represent the acceleration of the fluid particle in the horizontal plane. If the fluid acceleration is ignored, then the two momentum equations are simplified into the so-called diffusion wave equations. In contrast to the SWEs approach, it is much less convenient to model floods with the Navier-Stokes equations. In conventional computational fluid dynamics (CFD), cumbersome treatments are needed to accurately capture the shape of the free surface. The SWEs are derived using the assumptions of small vertical velocity component, smooth water surface, gradual variation and hydrostatic pressure distribution.
Resumo:
A workshop on the computational fluid dynamics (CFD) prediction of shock boundary-layer interactions (SBLIs) was held at the 48th AIAA Aerospace Sciences Meeting. As part of the workshop, numerous CFD analysts submitted solutions to four experimentally measured SBLIs. This paper describes the assessment of the CFD predictions. The assessment includes an uncertainty analysis of the experimental data, the definition of an error metric, and the application of that metric to the CFD solutions. The CFD solutions provided very similar levels of error and, in general, it was difficult to discern clear trends in the data. For the Reynolds-averaged Navier-Stokes (RANS) methods, the choice of turbulence model appeared to be the largest factor in solution accuracy. Scale-resolving methods, such as large-eddy simulation (LES), hybrid RANS/LES, and direct numerical simulation, produced error levels similar to RANS methods but provided superior predictions of normal stresses. Copyright © 2012 by Daniella E. Raveh and Michael Iovnovich.