952 resultados para catalytic specificity
Resumo:
Titanium containing wormhole-like mesoporous silicas, denoted Ti-HMS, synthesized both via the hydrothermal synthesis route and the post synthesis grafting technique, known as molecular designed dispersion, have been successfully applied in the gas phase oxidation of Toluene to CO and CO2. Selectivity towards CO2 for all catalysts, at temperatures between 400-600degreesC, was above 80%. Benzene and benzaldehyde were observed at temperatures above 450degreesC, but in very low concentrations. The conversion of toluene was shown to increase significantly when the V-TEX/N-MESO ratios were increased from 0.07 to 0.84. No significant difference in catalytic activity was observed for catalysts prepared via the different synthesis techniques. The catalytic activity also depends on the concentration of tetrahedrally coordinated titanium atoms and not on the total concentration of titanium in the catalyst.
Catalytic oxidation of VOCs in gas waste streams using high surface area mesoporous Ti-HMS catalysts
Resumo:
Plant resistance proteins (R proteins) recognize corresponding pathogen avirulence (Avr) proteins either indirectly through detection of changes in their host protein targets or through direct R-Avr protein interaction. Although indirect recognition imposes selection against Avr effector function, pathogen effector molecules recognized through direct interaction may overcome resistance through sequence diversification rather than loss of function. Here we show that the flax rust fungus AvrLS67 genes, whose products are recognized by the L5, L6, and L7 R proteins of flax, are highly diverse, with 12 sequence variants identified from six rust strains. Seven AvrL567 variants derived from Avr alleles induce necrotic responses when expressed in flax plants containing corresponding resistance genes (R genes), whereas five variants from avr alleles do not. Differences in recognition specificity between AvA567 variants and evidence for diversifying selection acting on these genes suggest they have been involved in a gene-specific arms race with the corresponding flax R genes. Yeast two-hybrid assays indicate that recognition is based on direct R-Avr protein interaction and recapitulate the interaction specificity observed in planta. Biochemical analysis of Escherichia coli-produced AvrL567 proteins shows that variants that escape recognition nevertheless maintain a conserved structure and stability, suggesting that the amino acid sequence differences directly affect the R-Avr protein interaction. We suggest that direct recognition associated with high genetic diversity at corresponding R and Avr gene loci represents an alternative outcome of plant-pathogen coevolution to indirect recognition associated with simple balanced polymorphisms for functional and nonfunctional R and Avr genes.
Resumo:
During inflammation, many cell types release reactive oxygen species (ROS) via the respiratory burst. These ROS are potent oxidants of LDL and its major protein, apolipoprotein B. Whilst native LDL is taken up by endothelial cells via a feedback controlled receptor-regulated process, oxidative modification of LDL renders it a ligand for many scavenger receptors. Scavenger receptors include CD-36, LOX-1 and the prototypic macrophage SR A I/II, all of which are variably expressed. Uncontrolled uptake of oxidised LDL is implicated in the pathogenesis of atherosclerosis. In addition, oxidised LDL increases CCR2 protein and mRNA expression on monocytes, and thus may contribute to monocyte retention and perpetuation in inflammatory, unstable atherosclerotic lesions. However, little data are available on the effects of specific minor modifications to apolipoprotein B. In order to identify the sequence specificity and nature of oxidative modifications which confer altered properties on LDL, we have investigated the effects of modified peptides (which correspond to the putative LDLR binding domain) on LDL uptake by HUVECs and U937 monocytes.