999 resultados para capability mechanism


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The reaction mechanism of Pd(O)-catalyzed allenes silastannation reaction is investigated by the density functional method B3LYP. The overall reaction mechanism is examined. For the allene insertion step, the Pd-Si bond is preferred over the Pd-Sn bond. The electronic mechanism of the allene insertion into Pd-Si bond to form sigma-vinylpalladium (terminal-insertion) and sigma-allylpalladium (internal-insertion) insertion products is discussed ill terms of the electron donation and back-donation. It is found that the electron back-donation is significant for both terminal- and internal-insertion. During allene insertion into Pd-Si bond, internal-insertion is preferred over terminal-insertion. By using methylallene, the regio-selectivity for the monosubstituted allene insertion into Pd-Si and Pd-Sn bond is analyzed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mg-8Gd-1Dy-0.3Zn (wt.%) alloy was prepared by high-pressure die-casting technique. The thermal stability, mechanical properties at temperature range from room temperature to 573 K and strengthening mechanism was investigated. The results showed that the die-cast state alloy was mainly composed of fine cellular equiaxed grain. The fine porosity-free skin region was related to the aggregation of rare earth elements. The long lamellar-shaped stacking compound containing Zn and polygon-shaped precipitate were observed along the grain boundaries. The die-cast sample exhibited high mechanical properties and good thermal stability until 523 K.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, organic-inorganic hybrid material, which is composed of silica and the grafting copolymer of poly (vinyl alcohol) and 4-vinylpyridine (PVA-g-P(4-VP)), was employed to immobilize Trichosporon cutaneum strain 2.570 cells. Cells entrapped into the hybrid material were found to keep a long-term viability. The mechanism of such a long-term viability was investigated by using confocal laser scanning microscopy (CLSM). Our studies revealed that arthroconidia produced in the extracellular material might play an important role in keeping the long-term viability of the immobilized microorganism. After the arthroconidia were activated, an electrochemical biochemical oxygen demand (BOD) sensor based on cell/hybrid material-modified supporting membrane was constructed for verifying the proposed mechanism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a solvothermal route to the synthesis of SrF2 hierarchical flowerlike structures based on thermal decomposition of single source precursor (SSP) of strontium trifluoroacetate in benzylamine solvent. These flowerlike superstructures are actually composed of numerous aggregated nanoplates, and the growth process involves the initial formation of spherical nanoparticles and subsequent transformation into nanoplates. which aggregated together to form microdisks and finally flowerlike superstructures. The results demonstrate the important role of benzylamine in the formation of well-defined SrF2 superstructures, not only providing size and shape control to form nanoplates but also contributing to the self-assembly behavior of nanoplates to build into flower-like superstructures. Additionally, the photoluminescence properties of the obtained SrF2 superstructures are studied.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A sensing system based on the photoinduced electron transfer of quantum dots (QDs) was designed to measure the interaction of anticancer drug and DNA, taking mitoxantrone (MTX) as a model drug. MTX adsorbed on the surface of QDs can quench the photoluminescence (PL) of QDs through the photoinduced electron-transfer process; and then the addition of DNA will bring the restoration of QDs PL intensity, as DNA can bind with MTX and remove it from QDs. Sensitive detection of MTX with the detection limit of 10 nmol L-1 and a linear detection range from 10 nmol L-1 to 4.5 mu mol L-1 was achieved. The dependence of PL intensity on DNA amount was successfully utilized to investigate the interactions between MTX and DNA. Both the binding constants and the sizes of binding site of MTX-DNA interactions were calculated based on the equations deduced for the PL recovery process. The binding constant obtained in our experiment was generally consistent with previous reports. The sensitive and speedy detection of MTX as well as the avoidance of modification or immobilization process made this system suitable and promising in the drug-DNA interaction studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By incorporating two phosphorescent dyes, namely, iridium(III)[bis(4,6-difluorophenyl)-pyridinato-N,C-2']picolinate (Flrpic) for blue emission and bis(2-(9,9-diethyl-9H-fluoren-2-yl)-1-phenyl-1 H-benzoimidazol-N,C-3) iridium(acetylacetonate) ((fbi)(2)Ir(acac)) for orange emission, into a single-energy well-like emissive layer, an extremely high-efficiency white organic light-emitting diode (WOLED) with excellent color stability is demonstrated. This device can achieve a peak forward-viewing power efficiency of 42.5 lm W-1, corresponding to an external quantum efficiency (EQE) of 19.3% and a current efficiency of 52.8 cd A(-1). Systematic studies of the dopants, host and dopant-doped host films in terms of photophysical properties (including absorption, photoluminescence, and excitation spectra), transient photoluminescence, current density-voltage characteristics, and temperature-dependent electroluminescence spectra are subsequently performed, from which it is concluded that the emission natures of Flrpic and (fbi)(2)Ir(acac) are, respectively, host-guest energy transfer and a direct exciton formation process. These two parallel pathways serve to channel the overall excitons to both dopants, greatly reducing unfavorable energy losses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The charge transport mechanism of oligo(p-phenylene ethynylene)s with lengths ranging from 0.98 to 5.11 nm was investigated using modified scanning tunneling microscopy break junction and conducting probe atomic force microscopy methods. The methods were based on observing the length dependence of molecular resistance at single molecule level and the current-voltage characteristics in a wide length distribution. An intrinsic transition from tunneling to hopping charge transport mechanism was observed near 2.75 nm. A new transitional zone was observed in the long length molecular wires compared to short ones. This was not a simple transition between direct tunneling and field emission, which may provide new insights into transport mechanism investigations. Theoretical calculations provided an essential explanation for these phenomena in terms of molecular electronic structures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Synthesis of submicrometre scale single-crystalline gold plates of nanometre thickness in the presence of nucleobase guanine through chemical reduction of HAuCl4 was investigated. The elemental composition of the as-prepared gold nanoplates was estimated using energy-dispersive x-ray spectroscopy. The as-prepared gold plates were composed of essentially (111) lattice planes, as revealed by both x-ray diffraction (XRD) and transmission electron microscopy (TEM) results. It was found that the molar ratio of HAuCl4 to guanine played a very important role in the formation of gold nanoplates. Gold nanoplates could be produced at a molar ratio of [HAuCl4]/[guanine] = 50: 1 while only smaller gold spherical nanoparticles were obtained at molar ratios of [HAuCl4]/[guanine] <= 20:1. A possible growth mechanism of the as-prepared gold nanoplates is proposed and discussed. The results and conclusion presented in this work may be valuable for our further understanding of the roles of precursor ligands in the control of nanoparticles aggregation states and the preparation of shape-controlled nanoparticles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigated the electronic structure of the d-electron heavy-fermion system CaCu3Ru4O12 by use of the full-potential linearized augmented plane wave method. Our results indicate that the compound is a paramagnetic metal, in agreement with the experimental observation. The conductivity of the compound is governed by two main factors. One is the Ru-O dp pi coupling around the Fermi energy level, which makes Ru-O-Ru networks conductive. The other is the hybridization between the itinerant Ru 4d electrons and the localized Cu 3d (dz(2) and part of dx(2)-y(2) and dxy) electrons through O 2p orbitals in the energy region from -2.0 to -1.0 eV. The Ru-O-Cu interaction makes the localized Cu electrons start to be itinerant through the coupling with Ru 4d electrons. This results in Ru-O-Cu networks being conductive. Therefore, in the title compound, both Ru-O-Ru and Ru-O-Cu networks contribute to the conducting behavior.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, the detailed conversion process of the dominant electroluminescence (EL) mechanism in a device with Eu(TTA)(3)phen (TTA=thenoyltrifluoroacetone, phen=1,10-phenanthroline) doped CBP (4,4(')-N,N-'-dicarbazole-biphenyl) film as the emitting layer was investigated by analyzing the evolution of carrier distribution on dye and host molecules with increasing voltage. Firstly, it was confirmed that only electrons can be trapped in Eu(TTA)(3)phen doped CBP. As a result, holes and electrons would be situated on CBP and Eu(TTA)(3)phen molecules, respectively, and thus creates an unbalanced carrier distribution on both dye and host molecules. With the help of EL and photoluminescence spectra, the distribution of holes and electrons on both Eu(TTA)(3)phen and CBP molecules was demonstrated to change gradually with increasing voltage. Therefore, the dominant EL mechanism in this device changes gradually from carrier trapping at relatively low voltage to Forster energy transfer at relatively high voltage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have fabricated and measured a series of electroluminescent devices with the structure of ITO/TPD/Eu(TTA)(3)phen (x):CBP/BCP/ ALQ/LiF/Al, where x is the weight percentage of Eu(TTA)3phen (from 0% to 6%). At very low current density, carrier trapping is the dominant luminescent mechanism and the 4% doped device shows the highest electroluminescence (EL) efficiency among all these devices. With increasing current density, Forster energy transfer participates in EL process. At the current density of 10.0 and 80.0mA/ cm(2), 2% and 3% doped devices show the highest EL efficiency, respectively. From analysis of the EL spectra and the EL efficiency-current density characteristics, we found that the EL efficiency is manipulated by Forster energy transfer efficiency at high current density. So we suggest that the dominant luminescent mechanism changes gradually from carrier trapping to Forster energy transfer with increasing current density. Moreover, the conversion of dominant EL mechanism was suspected to be partly responsible for the EL efficiency roll-off because of the lower EL quantum efficiency of Forster energy transfer compared with carrier trapping.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The reaction mechanism of the Beckmann rearrangement over B2O3/gamma-Al2O3 and TS-1 in the gas phase has been investigated by isotope labeling approach. The isotopic labeled products were measured by mass spectrometry method. By exchanging oxygen with H, 180 in the rearrangement step, it was found that the exchange reaction between cyclohexanone oxime and (H2O)-O-18 over B2O3/-gamma-Al2O3 and TS-1 could only be carried out in some extent. It suggested that the dissociation of nitrilium, over solid acids be not completely free as the classical mechanism. A concept of the dissociation degree (alpha) that is defined as the ratio of the dissociated intermediate nitrilium to the total intermediate nitrilium has been proposed. By fitting the experimental values with the calculation equation of isotopic labeled products, it is obtained that a values for B2O3/-gamma-Al2O3 and TS-1 are 0.199 and 0.806 at the reaction conditions, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Combining a single-molecule study of protein binding with a coarse grained molecular dynamics model including solvent (water molecules) effects, we find that biomolecular recognition is determined by flexibilities in addition to structures. Our single-molecule study shows that binding of CBD (a fragment of Wiskott-Aldrich syndrome protein) to Cdc42 involves bound and loosely bound states, which can be quantitatively explained in our model as a result of binding with large conformational changes. Our model identified certain key residues for binding consistent with mutational experiments. Our study reveals the role of flexibility and a new scenario of dimeric binding between the monomers: first bind and then fold.