988 resultados para business games
Resumo:
This paper studies an allocation procedure for coalitional games with veto players. The procedure is similar to the one presented by Dagan et al. (1997) for bankruptcy problems. According to it, a player, the proposer, makes a proposal that the remaining players must accept or reject, and con ict is solved bilaterally between the rejector and the proposer. We allow the proposer to make sequential proposals over several periods. If responders are myopic maximizers (i.e. consider each period in isolation), the only equilibrium outcome is the serial rule of Arin and Feltkamp (2012) regardless of the order of moves. If all players are farsighted, the serial rule still arises as the unique subgame perfect equilibrium outcome if the order of moves is such that stronger players respond to the proposal after weaker ones.
Resumo:
On several classes of n-person NTU games that have at least one Shapley NTU value, Aumann characterized this solution by six axioms: Non-emptiness, efficiency, unanimity, scale covariance, conditional additivity, and independence of irrelevant alternatives (IIA). Each of the first five axioms is logically independent of the remaining axioms, and the logical independence of IIA is an open problem. We show that for n = 2 the first five axioms already characterize the Shapley NTU value, provided that the class of games is not further restricted. Moreover, we present an example of a solution that satisfies the first five axioms and violates IIA for two-person NTU games (N, V) with uniformly p-smooth V(N).
Resumo:
This paper investigates the effect of focal points and initial relative position in the outcome of a bargaining process. We conduct two on-line experiments. In the first experiment we attempt to replicate Güth, Huck and Müller's (2001) results about the relevance of equal splits. In our second experiment, we recover the choices of participants in forty mini-ultimatum games. This design allows us to test whether the equal split or any other distribution or set of distributions are salient. Our data provide no support for a focal-point explanation but we find support for an explanation based on relative position. Our results confirm that there is a norm against hyper-fair offers. Proposers are expected to behave selfishly when the unselfish distribution leads to a change in the initial relative position.
Resumo:
This paper is a version of the discussion paper titled "Simple coalitional strategy profiles"
Resumo:
In noncooperative cost sharing games, individually strategic agents choose resources based on how the welfare (cost or revenue) generated at each resource (which depends on the set of agents that choose the resource) is distributed. The focus is on finding distribution rules that lead to stable allocations, which is formalized by the concept of Nash equilibrium, e.g., Shapley value (budget-balanced) and marginal contribution (not budget-balanced) rules.
Recent work that seeks to characterize the space of all such rules shows that the only budget-balanced distribution rules that guarantee equilibrium existence in all welfare sharing games are generalized weighted Shapley values (GWSVs), by exhibiting a specific 'worst-case' welfare function which requires that GWSV rules be used. Our work provides an exact characterization of the space of distribution rules (not necessarily budget-balanced) for any specific local welfare functions remains, for a general class of scalable and separable games with well-known applications, e.g., facility location, routing, network formation, and coverage games.
We show that all games conditioned on any fixed local welfare functions possess an equilibrium if and only if the distribution rules are equivalent to GWSV rules on some 'ground' welfare functions. Therefore, it is neither the existence of some worst-case welfare function, nor the restriction of budget-balance, which limits the design to GWSVs. Also, in order to guarantee equilibrium existence, it is necessary to work within the class of potential games, since GWSVs result in (weighted) potential games.
We also provide an alternative characterization—all games conditioned on any fixed local welfare functions possess an equilibrium if and only if the distribution rules are equivalent to generalized weighted marginal contribution (GWMC) rules on some 'ground' welfare functions. This result is due to a deeper fundamental connection between Shapley values and marginal contributions that our proofs expose—they are equivalent given a transformation connecting their ground welfare functions. (This connection leads to novel closed-form expressions for the GWSV potential function.) Since GWMCs are more tractable than GWSVs, a designer can tradeoff budget-balance with computational tractability in deciding which rule to implement.
Resumo:
We examine voting situations in which individuals have incomplete information over each others' true preferences. In many respects, this work is motivated by a desire to provide a more complete understanding of so-called probabilistic voting.
Chapter 2 examines the similarities and differences between the incentives faced by politicians who seek to maximize expected vote share, expected plurality, or probability of victory in single member: single vote, simple plurality electoral systems. We find that, in general, the candidates' optimal policies in such an electoral system vary greatly depending on their objective function. We provide several examples, as well as a genericity result which states that almost all such electoral systems (with respect to the distributions of voter behavior) will exhibit different incentives for candidates who seek to maximize expected vote share and those who seek to maximize probability of victory.
In Chapter 3, we adopt a random utility maximizing framework in which individuals' preferences are subject to action-specific exogenous shocks. We show that Nash equilibria exist in voting games possessing such an information structure and in which voters and candidates are each aware that every voter's preferences are subject to such shocks. A special case of our framework is that in which voters are playing a Quantal Response Equilibrium (McKelvey and Palfrey (1995), (1998)). We then examine candidate competition in such games and show that, for sufficiently large electorates, regardless of the dimensionality of the policy space or the number of candidates, there exists a strict equilibrium at the social welfare optimum (i.e., the point which maximizes the sum of voters' utility functions). In two candidate contests we find that this equilibrium is unique.
Finally, in Chapter 4, we attempt the first steps towards a theory of equilibrium in games possessing both continuous action spaces and action-specific preference shocks. Our notion of equilibrium, Variational Response Equilibrium, is shown to exist in all games with continuous payoff functions. We discuss the similarities and differences between this notion of equilibrium and the notion of Quantal Response Equilibrium and offer possible extensions of our framework.