929 resultados para bulk longitudinal velocity
Resumo:
Recent observations from the EISCAT incoherent scatter radar have revealed bursts of poleward ion flow in the dayside auroral ionosphere which are consistent with the ionospheric signature of flux transfer events at the magnetopause. These bursts frequently contain ion drifts which exceed the neutral thermal speed and, because the neutral thermospheric wind is incapable of responding sufficiently rapidly, toroidal, non-Maxwellian ion velocity distributions are expected. The EISCAT observations are made with high time resolution (15 seconds) and at a large angle to the geomagnetic field (73.5°), allowing the non-Maxwellian nature of the distribution to be observed remotely for the first time. The observed features are also strongly suggestive of a toroidal distribution: characteristic spectral shape, increased scattered power (both consistent with reduced Landau damping and enhanced electric field fluctuations) and excessively high line-of-sight ion temperatures deduced if a Maxwellian distribution is assumed. These remote sensing observations allow the evolution of the distributions to be observed. They are found to be non-Maxwellian whenever the ion drift exceeds the neutral thermal speed, indicating that such distributions can exist over the time scale of the flow burst events (several minutes).
Resumo:
The transport of ionospheric ions from a source in the polar cleft ionosphere through the polar magnetosphere is investigated using a two-dimensional, kinetic, trajectory-based code. The transport model includes the effects of gravitation, longitudinal magnetic gradient force, convection electric fields, and parallel electric fields. Individual ion trajectories as well as distribution functions and resulting bulk parameters of density, parallel average energy, and parallel flux for a presumed cleft ionosphere source distribution are presented for various conditions to illustrate parametrically the dependences on source energies, convection electric field strengths, ion masses, and parallel electric field strengths. The essential features of the model are consistent with the concept of a cleft-based ion fountain supplying ionospheric ions to the polar magnetosphere, and the resulting plasma distributions and parameters are in general agreement with recent low-energy ion measurements from the DE 1 satellite.
Resumo:
A new coupled cloud physics–radiation parameterization of the bulk optical properties of ice clouds is presented. The parameterization is consistent with assumptions in the cloud physics scheme regarding particle size distributions (PSDs) and mass–dimensional relationships. The parameterization is based on a weighted ice crystal habit mixture model, and its bulk optical properties are parameterized as simple functions of wavelength and ice water content (IWC). This approach directly couples IWC to the bulk optical properties, negating the need for diagnosed variables, such as the ice crystal effective dimension. The parameterization is implemented into the Met Office Unified Model Global Atmosphere 5.0 (GA5) configuration. The GA5 configuration is used to simulate the annual 20-yr shortwave (SW) and longwave (LW) fluxes at the top of the atmosphere (TOA), as well as the temperature structure of the atmosphere, under various microphysical assumptions. The coupled parameterization is directly compared against the current operational radiation parameterization, while maintaining the same cloud physics assumptions. In this experiment, the impacts of the two parameterizations on the SW and LW radiative effects at TOA are also investigated and compared against observations. The 20-yr simulations are compared against the latest observations of the atmospheric temperature and radiative fluxes at TOA. The comparisons demonstrate that the choice of PSD and the assumed ice crystal shape distribution are as important as each other. Moreover, the consistent radiation parameterization removes a long-standing tropical troposphere cold temperature bias but slightly warms the southern midlatitudes by about 0.5 K.
Resumo:
Paleoenvironmental and paleoclimatic changes during the Valanginian carbon isotopic excursion (CIE) have been investigated in the western Tethys. For this purpose, bulk-rock and clay mineralogies, as well as phosphorus (P) contents were evaluated in a selection of five sections located in the Vocontian Basin (Angles, SE France; Alvier, E Switzerland; Malleval, E France), and the Lombardian Basin (Capriolo, N Italy; Breggia, S Switzerland). Within the CIE interval, bulk-rock and clay mineralogies are inferred to reflect mostly climate change. The onset of the CIE (Busnardoites campylotoxus ammonite Zone) is characterized by higher detrital index (DI: sum of the detrital minerals divided by calcite contents) values and the presence of kaolinite in their clay-mineral assemblages. In the late Valanginian (from the Saynoceras verrucosum Zone up to the end of the Valanginian), the samples show relatively variable DI and lower values or the absence of kaolinite. The variation in the mineralogical composition is interpreted as reflecting a change from a climate characterized by optimal weathering conditions associated with an increase in terrigenous input on the southern European margin during the CIE towards an overall unstable climate associated with drier conditions in the late Valanginian. This is contrasted by a dissymmetry (proximal vs distal) along the studied transect, the northern Tethyan margin being more sensitive to changes in continental input compared to the distal environments. P accumulation rates (PAR) present similar features. In the Vocontian basin, P content variations are associated with changes in terrigenous influx, whereas in the Lombardian basin (i.e. Capriolo and Breggia), PAR values are less well correlated. This is mainly because the deeper part of the Tethys was less sensitive to changes in continental inputs. The onset of the CIE (top of the B. campylotoxus Zone) records a general increase in PAR suggesting an increase in marine nutrient levels. This is linked to higher continental weathering rates and the enhanced influx of nutrients into the ocean. In the period corresponding to the shift itself, P contents show a dissymmetry between the Vocontian and Lombardian basins (proximal vs distal). For the sections of Malleval, Alvier and Angles, a decrease in P concentrations associated to a decrease in detrital input is observed. In Capriolo and Breggia, PAR show maximum values during the plateau, indicating a more complex interaction between different P sources. The time interval including the top of S. verrucosum Zone up to the end of the Valanginian is characterized by variable PAR values, suggesting variable nutrient influxes. These changes are in agreement with an evolution towards seasonally contrasted conditions in the late Valanginian.
Resumo:
The turbulent structure of a stratocumulus-topped marine boundary layer over a 2-day period is observed with a Doppler lidar at Mace Head in Ireland. Using profiles of vertical velocity statistics, the bulk of the mixing is identified as cloud driven. This is supported by the pertinent feature of negative vertical velocity skewness in the sub-cloud layer which extends, on occasion, almost to the surface. Both coupled and decoupled turbulence characteristics are observed. The length and timescales related to the cloud-driven mixing are investigated and shown to provide additional information about the structure and the source of the mixing inside the boundary layer. They are also shown to place constraints on the length of the sampling periods used to derive products, such as the turbulent dissipation rate, from lidar measurements. For this, the maximum wavelengths that belong to the inertial subrange are studied through spectral analysis of the vertical velocity. The maximum wavelength of the inertial subrange in the cloud-driven layer scales relatively well with the corresponding layer depth during pronounced decoupled structure identified from the vertical velocity skewness. However, on many occasions, combining the analysis of the inertial subrange and vertical velocity statistics suggests higher decoupling height than expected from the skewness profiles. Our results show that investigation of the length scales related to the inertial subrange significantly complements the analysis of the vertical velocity statistics and enables a more confident interpretation of complex boundary layer structures using measurements from a Doppler lidar.
Resumo:
Films that feature high-speed diegetic motion, and present those high speeds through fast mobile framing and fast cutting, are frequently charged with generating a sensory overload which empties out meaning or any sense of spatial orientation. Inherent in this discourse is a privileging of optical-spatial intelligibility that suppresses consideration of the ways cinema can represent diegetic velocity, and the spectator’s sensory experience of the same. This paper will instead highlight the centrality of the evocation of a trajectory for movement for the spectator’s experience of diegetic speed, an evocation that does not depend on optical-spatial legibility for its affective force.
Resumo:
Ever since the classic research of Nicholls (1976) and others, effort has been recognized as a double-edged sword: whilst it might enhance achievement, it undermines academic self-concept (ASC). However, there has not been a thorough evaluation of the longitudinal reciprocal effects of effort, ASC and achievement,in the context of modern self-concept theory and statistical methodology. Nor have there been developmental equilibrium tests of whether these effects are consistent across the potentially volatile early-to-middle adolescence. Hence, focusing on mathematics, we evaluate reciprocal effects models over the first four years of secondary school, relating effort, achievement (test scores and school grades), ASC, and ASCxEffort interactions for a representative sample of 3,421 German students (Mn age = 11.75 years at Wave 1). ASC, effort and achievement were positively correlated at each wave, and there was a clear pattern of positive reciprocal positive effects among ASC, test scores and school grades—each contributing to the other, after controlling for the prior effects of all others. There was an asymmetrical pattern of effects for effort that is consistent with the double-edged sword premise: prior school grades had positive effects on subsequent effort, but prior effort had non-significant or negative effects on subsequent grades and ASC. However, on the basis of a synergistic application of new theory and methodology, we predicted and found a significant ASC-by-effort interaction, such that prior effort had more positive effects on subsequent ASC and school grades when prior ASC was high—thus providing a key to breaking the double-edged sword.
Resumo:
Consistently with a priori predictions, school retention (repeating a year in school) had largely positive effects for a diverse range of 10 outcomes (e.g., math self-concept, self-efficacy, anxiety, relations with teachers, parents and peers, school grades, and standardized achievement test scores). The design, based on a large, representative sample of German students (N = 1,325, M age = 11.75 years) measured each year during the first five years of secondary school, was particularly strong. It featured four independent retention groups (different groups of students, each repeating one of the four first years of secondary school, total N = 103), with multiple post-test waves to evaluate short- and long-term effects, controlling for covariates (gender, age, SES, primary school grades, IQ) and one or more sets of 10 outcomes realised prior to retention. Tests of developmental invariance demonstrated that the effects of retention (controlling for covariates and pre-retention outcomes) were highly consistent across this potentially volatile early-to-middle adolescent period; largely positive effects in the first year following retention were maintained in subsequent school years following retention. Particularly considering that these results are contrary to at least some of the accepted wisdom about school retention, the findings have important implications for educational researchers, policymakers and parents.
Resumo:
Objective: To describe the composition of metabolic acidosis in patients with severe sepsis and septic shock at intensive care unit admission and throughout the first 5 days of intensive care unit stay. Design: Prospective, observational study. Setting: Twelve-bed intensive care unit. Patients: Sixty patients with either severe sepsis or septic shock. Interventions: None. Measurements and Main Results: Data were collected until 5 days after intensive care unit admission. We studied the contribution of inorganic ion difference, lactate, albumin, phosphate, and strong ion gap to metabolic acidosis. At admission, standard base excess was -6.69 +/- 4.19 mEq/L in survivors vs. -11.63 +/- 4.87 mEq/L in nonsurvivors (p < .05); inorganic ion difference (mainly resulting from hyperchloremia) was responsible for a decrease in standard base excess by 5.64 +/- 4.96 mEq/L in survivors vs. 8.94 +/- 7.06 mEq/L in nonsurvivors (p < .05); strong ion gap was responsible for a decrease in standard base excess by 4.07 +/- 3.57 mEq/L in survivors vs. 4.92 +/- 5.55 mEq/L in nonsurvivors with a nonsignificant probability value; and lactate was responsible for a decrease in standard base excess to 1.34 +/- 2.07 mEq/L in survivors vs. 1.61 +/- 2.25 mEq/L in nonsurvivors with a nonsignificant probability value. Albumin had an important alkalinizing effect in both groups; phosphate had a minimal acid-base effect. Acidosis in survivors was corrected during the study period as a result of a decrease in lactate and strong ion gap levels, whereas nonsurvivors did not correct their metabolic acidosis. In addition to Acute Physiology and Chronic Health Evaluation 11 score and serum creatinine level, inorganic ion difference acidosis magnitude at intensive care unit admission was independently associated with a worse outcome. Conclusions: Patients with severe sepsis and septic shock exhibit a complex metabolic acidosis at intensive care unit admission, caused predominantly by hyperchloremic acidosis, which was more pronounced in nonsurvivors. Acidosis resolution in survivors was attributable to a decrease in strong ion gap and lactate levels. (Crit Care Med 2009; 37:2733-2739)
Resumo:
Objective: To compare and evaluate longitudinally the dental arch relationships from 4.5 to 13.5 years of age with the Bauru-BCLP Yardstick in a large sample of patients with bilateral cleft lip and palate (BCLP). Design: Retrospective longitudinal intercenter outcome study. Patients: Dental casts of 204 consecutive patients with complete BCLP were evaluated at 6, 9, and 12 years of age. All models were identified only by random identification numbers. Setting: Three cleft palate centers with different treatment protocols. Main Outcome Measures: Dental arch relationships were categorized with the Bauru-BCLP yardstick. Increments for each interval (from 6 to 9 years, 6 to 12 years, and 9 to 12 years) were analyzed by logistic and linear regression models. Results: There were no significant differences in outcome measures between the centers at age 12 or at age 9. At age 6, center B showed significantly better results (p = .027), but this difference diminished as the yardstick score for this group increased over time (linear regression analysis), the difference with the reference category (center C, boys) for the intervals 6 to 12 and 9 to 12 years being 10.4% (p = .041) and 12.9% (p = .009), respectively. Conclusions: Despite different treatment protocols, dental arch relationships in the three centers were comparable in final scores at age 9 and 12 years. Delaying hard palate closure and employing infant orthopedics did not appear to be advantageous in the long run. Premaxillary osteotomy employed in center B appeared to be associated with less favorable development of the dental arch relationship between 9 and 12 years.
Resumo:
Objective: To study the growth of children with complete unilateral cleft lip and palate (UCLP) from birth to 2 years of age and to construct specific UCLP growth curves. Design: Physical growth was a secondary outcome measure of a National Institutes of Health-sponsored longitudinal, prospective clinical trial involving the University of Florida (United States) and the University of Sao Paulo (Brazil). Patients: Six hundred twenty-seven children with UCLP, nonsyndromic, both genders. Methods: Length, weight, and head circumference were prospectively measured for a group of children enrolled in a clinical trial. Median growth curves for the three parameters (length, weight, head circumference) were performed and compared with the median for the National Center for Health Statistics (NCHS) curves. The median values for length, weight, and head circumference at birth and 6, 12, 18, and 24 months of age were plotted against NCHS median values and statistically compared at birth and 24 months. Setting: Hospital de Reabilitacao de Anomalias Craniofaciais, Universidade de Sao Paulo, Bauru, Brazil (HRAC-USP). Results: At birth, children of both genders with UCLP presented with smaller body dimensions in relation to NCHS median values, but the results suggest a catch-up growth for length, weight, and head circumference for girls and for weight (to some degree) and head circumference for boys. Conclusions: Weight was the most compromised parameter for both genders, followed by length and then head circumference. There was no evidence of short stature. This study established growth curves for children with UCLP.
Resumo:
We here investigate the dispersion properties of radiation in the SS433 relativistic jets. We assume that the jet is composed of cold electron-proton plasma immersed in a predominantly parallel magnetic field to the jet axis. We find that for the mildly relativistic source SS433 (for which