979 resultados para bovine viral diarrhoea virus (BVDV)
Resumo:
Viruses share antigenic sites with normal host cell components, a phenomenon known as molecular mimicry. It has long been suggested that viral infections might trigger an autoimmune response by several mechanisms including molecular mimicry. More than 600 antiviral monoclonal antibodies generated against 11 different viruses have been reported to react with 3.5% of cells specific for uninfected mouse organs. The main pathological feature of tropical spastic paraparesis/human T-lymphotropic virus type I (HTLV-I)-associated myelopathy (TSP/HAM) is a chronic inflammation of the spinal cord characterized by perivascular cuffing of mononuclear cells accompanied by parenchymal lymphocytic infiltration. We detected the presence of autoantibodies against a 98- to 100-kDa protein of in vitro cultured human astrocytes and a 33- to 35-kDa protein from normal human brain in the serum of HTLV-I-seropositive individuals. The two cell proteins exhibited molecular mimicry with HTLV-I gag and tax proteins in TSP/HAM patients, respectively. Furthermore, the location of 33- to 35-kDa protein cross-reaction correlated with the anatomical spinal cord areas (in the rat model) in which axonal damage has been reported in several cases of TSP/HAM patients. Our experimental evidence strongly suggests that the demyelinating process occurring in TSP/HAM may be mediated by molecular mimicry between domains of some viral proteins and normal cellular targets of the spinal cord sections involved in the neurodegeneration.
Resumo:
It has been suggested that the measurement of metronidazole clearance is a sensitive method for evaluating liver function. The aim of this study was to evaluate the usefulness of plasma hydroxy-metronidazole/metronidazole ratios as indicators of dynamic liver function to detect changes resulting from the various forms of chronic hepatitis C virus (HCV) infection. A total of 139 individuals were studied: 14 healthy volunteers, 22 healthy, asymptomatic, consecutive anti-HCV-positive HCV-RNA negative subjects, 81 patients with chronic hepatitis C (49 with moderate/severe chronic hepatitis and 34 with mild hepatitis), and 20 patients with cirrhosis of the liver. HCV status was determined by the polymerase chain reaction. Plasma concentrations of metronidazole and its hydroxy-metabolite were measured by reverse-phase high-performance liquid chromatography with ultraviolet detection in a blood sample collected 10 min after the end of a metronidazole infusion. Anti-HCV-positive HCV-RNA-negative individuals demonstrated a significantly reduced capacity to metabolize intravenously infused metronidazole compared to healthy individuals (0.0478 ± 0.0044 vs 0.0742 ± 0.0232). Liver cirrhosis patients also had a reduced plasma hydroxy-metronidazole/metronidazole ratio when compared to the other groups of anti-HCV-positive individuals (0.0300 ± 0.0032 vs 0.0438 ± 0.0027 (moderate/severe chronic hepatitis) vs 0.0455 ± 0.0026 (mild chronic hepatitis) and vs 0.0478 ± 0.0044 (anti-HCV-positive, HCV-RNA-negative individuals)). These results suggest an impairment of the metronidazole metabolizing system induced by HCV infection that lasts after viral clearance. In those patients with chronic hepatitis C, this impairment is paralleled by progression of the disease to liver cirrhosis.
Resumo:
Enveloped viruses always gain entry into the cytoplasm by fusion of their lipid envelope with a cell membrane. Some enveloped viruses fuse directly with the host cell plasma membrane after virus binding to the cell receptor. Other enveloped viruses enter the cells by the endocytic pathway, and fusion depends on the acidification of the endosomal compartment. In both cases, virus-induced membrane fusion is triggered by conformational changes in viral envelope glycoproteins. Two different classes of viral fusion proteins have been described on the basis of their molecular architecture. Several structural data permitted the elucidation of the mechanisms of membrane fusion mediated by class I and class II fusion proteins. In this article, we review a number of results obtained by our laboratory and by others that suggest that the mechanisms involved in rhabdovirus fusion are different from those used by the two well-studied classes of viral glycoproteins. We focus our discussion on the electrostatic nature of virus binding and interaction with membranes, especially through phosphatidylserine, and on the reversibility of the conformational changes of the rhabdovirus glycoprotein involved in fusion. Taken together, these data suggest the existence of a third class of fusion proteins and support the idea that new insights should emerge from studies of membrane fusion mediated by the G protein of rhabdoviruses. In particular, the elucidation of the three-dimensional structure of the G protein or even of the fusion peptide at different pH's might provide valuable information for understanding the fusion mechanism of this new class of fusion proteins.
Resumo:
Hepatitis C virus (HCV) is essentially hepatotropic but its manifestations can extend beyond the liver. It can be associated with autoimmune diseases, such as mixed cryoglobulinemia, membranoproliferative glomerulonephritis, autoimmune thyroiditis, and lymphoproliferative disorders. The mechanisms that trigger these manifestations are not completely understood. We describe a 48-year-old man with chronic HCV infection (circulating HCV RNA and moderate hepatitis as indicated by liver biopsy), cryoglobulinemia, and sensory and motor peripheral neuropathy. The diagnosis of multineuropathy was confirmed by clinical examination and electromyographic tests. A nerve biopsy revealed an inflammatory infiltrate in the perineurial space and signs of demyelination and axonal degeneration. The patient had no improvement of neurological symptoms with the use of analgesics and neuro-modulators. He was then treated with interferon-alpha (3 million units subcutaneously, 3 times per week) and ribavirin (500 mg orally, twice a day) for 48 weeks. Six months after the end of therapy, the patient had sustained viral response (negative HCV RNA) and remission of neurological symptoms, but cryoglobulins remained positive. A review of the literature on the pathogenesis and treatment of neurological manifestations associated with HCV infection is presented. This report underscores the need for a thorough evaluation of HCV-infected patients because of the possibility of extrahepatic manifestations. Antiviral treatment with interferon and ribavirin can be effective and should be considered in patients with neurological complications associated with HCV infection.
Resumo:
Genotype E of hepatitis B virus (HBV) has not been described in Brazil and is found mainly in Africa. Genotype A is the most prevalent in Brazil, and genotypes B, C, D, and F have already been reported. We report here an HBV genotype E-infected patient and some characterization of surface (S) protein, DNA polymerase (P) and precore/core (preC/C) coding regions based on the viral genome. The patient is a 31-year-old black man with chronic hepatitis B who was born and raised in Angola. He has been followed by a hepatologist in São Paulo, Brazil, since November 2003, and he is a frequent traveler to Latin America, Africa, and Europe. In 2003, he was diagnosed with HBV infection and started treatment with lamivudine with the later addition of adefovir dipivoxil. No known risk factor was identified. Serologically, he is HBsAg and anti-HBe positive, but HBeAg and anti-HBs negative. DNA sequence analysis of the S/P region confirmed that this patient is infected with genotype E, subtype ayw4. The preC/C region showed G1896A and G1899A mutations but no mutations in the basal core promoter. Nucleotide substitutions common in genotype E were also observed (C1772, T1858 and A1757). Although this is not an autochthonous case and there is no evidence of further spread, the description of this case in Brazil highlights the current risk of viral genotypes spreading with unprecedented speed due to constant travel around the world.
Resumo:
Some studies have suggested that human immunodeficiency virus (HIV) infection modifies the natural history of hepatitis C virus (HCV) infection, accelerating the progression of fibrosis and the development of cirrhosis. Our objective was to evaluate the fibrosis progression rate (FPR) in HCV/HIV-co-infected patients, and to identify factors that may influence it. HCV-mono-infected and HCV/HIV-co-infected patients with a known date of HCV infection (transfusion or injection drug use) and a liver biopsy were included. The FPR was defined as the ratio between the fibrosis stage (Metavir score) and the estimated length of infection in years and the result was reported as fibrosis units per year. The factors studied were gender, age at infection, consumption of alcohol, aminotransferase levels, histological activity grade, HCV genotype and viral load, CD4 cell count, HIV viral load, and the use of antiretroviral therapy. Sixty-five HCV-infected (group 1) and 53 HCV/HIV-co-infected (group 2) patients were evaluated over a period of 19 months. The mean FPR of groups 1 and 2 was 0.086 ± 0.074 and 0.109 ± 0.098 fibrosis units per year, respectively (P = 0.276). There was a correlation between length of HCV infection and stage of fibrosis in both groups. The age at infection, the aspartate aminotransferase level (r = 0.36) and the inflammatory activity grade were correlated with the FPR (P < 0.001). No difference in FPR was found between HCV-mono-infected and HCV/HIV-co-infected patients.
Resumo:
Bovine coronavirus (BCoV) causes severe diarrhea in newborn calves, is associated with winter dysentery in adult cattle and respiratory infections in calves and feedlot cattle. The BCoV S protein plays a fundamental role in viral attachment and entry into the host cell, and is cleaved into two subunits termed S1 (amino terminal) and S2 (carboxy terminal). The present study describes a strategy for the sequencing of the BCoV S1 gene directly from fecal diarrheic specimens that were previously identified as BCoV positive by RT-PCR assay for N gene detection. A consensus sequence of 2681 nucleotides was obtained through direct sequencing of seven overlapping PCR fragments of the S gene. The samples did not undergo cell culture passage prior to PCR amplification and sequencing. The structural analysis was based on the genomic differences between Brazilian strains and other known BCoV from different geographical regions. The phylogenetic analysis of the entire S1 gene showed that the BCoV Brazilian strains were more distant from the Mebus strain (97.8% identity for nucleotides and 96.8% identity for amino acids) and more similar to the BCoV-ENT strain (98.7% for nucleotides and 98.7% for amino acids). Based on the phylogenetic analysis of the hypervariable region of the S1 subunit, these strains clustered with the American (BCoV-ENT, 182NS) and Canadian (BCQ20, BCQ2070, BCQ9, BCQ571, BCQ1523) calf diarrhea and the Canadian winter dysentery (BCQ7373, BCQ2590) strains, but clustered on a separate branch of the Korean and respiratory BCoV strains. The BCoV strains of the present study were not clustered in the same branch of previously published Brazilian strains (AY606193, AY606194). These data agree with the genealogical construction and suggest that at least two different BCoV strains are circulating in Brazil.
Resumo:
Hepatitis C, a worldwide viral infection, is an important health problem in Brazil. The virus causes chronic infection, provoking B lymphocyte dysfunction, as represented by cryoglobulinemia, non-organ-specific autoantibody production, and non-Hodgkin's lymphoma. The aim of this research was to screen for the presence of antiphospholipid autoantibodies in 109 Brazilian hepatitis C virus carriers without clinical history of antiphospholipid syndrome. Forty healthy individuals were used as the control group. IgA, IgG, and IgM antibodies against cardiolipin and β2-glycoprotein I were measured with an enzyme-linked immunosorbent assay, using a cut-off point of either 20 UPL or 20 SBU. While 24 (22.0%) hepatitis C carriers had moderate titers of IgM anticardiolipin antibodies (median, 22.5 MPL; 95%CI: 21.5-25.4 MPL), only three carriers (<3%) had IgG anticardiolipin antibodies (median, 23 GPL; 95%CI: 20.5-25.5 GPL). Furthermore, IgA anticardiolipin antibodies were not detected in these individuals. Male gender and IgM anticardiolipin seropositivity were associated in the hepatitis C group (P = 0.0004). IgA anti-β2-glycoprotein-I antibodies were detected in 29 of 109 (27.0%) hepatitis C carriers (median, 41 SAU; 95%CI: 52.7-103.9 SAU). Twenty patients (18.0%) had IgM anti-β2-glycoprotein I antibodies (median, 27.6 SMU; 95%CI: 23.3-70.3 SMU), while two patients had IgG antibodies against this protein (titers, 33 and 78 SGU). Antiphospholipid antibodies were detected in only one healthy individual, who was seropositive for IgM anticardiolipin. We concluded that Brazilian individuals chronically infected with hepatitis C virus present a significant production of antiphospholipid antibodies, mainly IgA anti-β2-glycoprotein I antibodies, which are not associated with clinical manifestations of antiphospholipid syndrome.
Resumo:
Chronic hepatitis B (HBV) and C (HCV) virus infections are the most important factors associated with hepatocellular carcinoma (HCC), but tumor prognosis remains poor due to the lack of diagnostic biomarkers. In order to identify novel diagnostic markers and therapeutic targets, the gene expression profile associated with viral and non-viral HCC was assessed in 9 tumor samples by oligo-microarrays. The differentially expressed genes were examined using a z-score and KEGG pathway for the search of ontological biological processes. We selected a non-redundant set of 15 genes with the lowest P value for clustering samples into three groups using the non-supervised algorithm k-means. Fisher’s linear discriminant analysis was then applied in an exhaustive search of trios of genes that could be used to build classifiers for class distinction. Different transcriptional levels of genes were identified in HCC of different etiologies and from different HCC samples. When comparing HBV-HCC vs HCV-HCC, HBV-HCC/HCV-HCC vs non-viral (NV)-HCC, HBC-HCC vs NV-HCC, and HCV-HCC vs NV-HCC of the 58 non-redundant differentially expressed genes, only 6 genes (IKBKβ, CREBBP, WNT10B, PRDX6, ITGAV, and IFNAR1) were found to be associated with hepatic carcinogenesis. By combining trios, classifiers could be generated, which correctly classified 100% of the samples. This expression profiling may provide a useful tool for research into the pathophysiology of HCC. A detailed understanding of how these distinct genes are involved in molecular pathways is of fundamental importance to the development of effective HCC chemoprevention and treatment.
Resumo:
Bovine herpesvirus type 5 (BoHV-5) is an important pathogen of cattle in South America. We describe here the construction and characterization of deletion mutants defective in the glycoprotein E (gE) or thymidine kinase (TK) gene or both (gE/TK) from a highly neurovirulent and well-characterized Brazilian BoHV-5 strain (SV507/99). A gE-deleted recombinant virus (BoHV-5 gE∆) was first generated in which the entire gE open reading frame was replaced with a chimeric green fluorescent protein gene. A TK-deleted recombinant virus (BoHV-5 TK∆) was then generated in which most of the TK open reading frame sequences were deleted and replaced with a chimeric β-galactosidase gene. Subsequently, using the BoHV-5 gE∆ virus as backbone, a double gene-deleted (TK plus gE) BoHV-5 recombinant (BoHV-5 gE/TK∆) was generated. The deletion of the gE and TK genes was confirmed by immunoblotting and PCR, respectively. In Madin Darby bovine kidney (MDBK) cells, the mutants lacking gE (BoHV-5 gE∆) and TK + gE (BoHV-5 gE/TK∆) produced small plaques while the TK-deleted BoHV-5 produced wild-type-sized plaques. The growth kinetics and virus yields in MDBK cells for all three recombinants (BoHV-5 gE∆, BoHV-5 TK∆ and BoHV-5 gE/TK∆) were similar to those of the parental virus. It is our belief that the dual gene-deleted recombinant (BoHV-5 gE/TK∆) produced on the background of a highly neurovirulent Brazilian BoHV-5 strain may have potential application in a vaccine against BoHV-5.
Resumo:
Gene therapy is an alternative treatment for genetic lung disease, especially monogenic disorders such as cystic fibrosis. Cystic fibrosis is a severe autosomal recessive disease affecting one in 2500 live births in the white population, caused by mutation of the cystic fibrosis transmembrane conductance regulator (CFTR). The disease is classically characterized by pancreatic enzyme insufficiency, an increased concentration of chloride in sweat, and varying severity of chronic obstructive lung disease. Currently, the greatest challenge for gene therapy is finding an ideal vector to deliver the transgene (CFTR) to the affected organ (lung). Adeno-associated virus is the most promising viral vector system for the treatment of respiratory disease because it has natural tropism for airway epithelial cells and does not cause any human disease. This review focuses on the basic properties of adeno-associated virus and its use as a vector for cystic fibrosis gene therapy.
Resumo:
Idiopathic interstitial pneumonias include complex diseases that have a strong interaction between genetic makeup and environmental factors. However, in many cases, no infectious agent can be demonstrated, and these clinical diseases rapidly progress to death. Theoretically, idiopathic interstitial pneumonias could be caused by the Epstein-Barr virus, cytomegalovirus, adenovirus, hepatitis C virus, respiratory syncytial virus, and herpesvirus, which may be present in such small amounts or such configuration that routine histopathological analysis or viral culture techniques cannot detect them. To test the hypothesis that immunohistochemistry provides more accurate results than the mere histological demonstration of viral inclusions, this method was applied to 37 open lung biopsies obtained from patients with idiopathic interstitial pneumonias. As a result, immunohistochemistry detected measles virus and cytomegalovirus in diffuse alveolar damage-related histological patterns of acute exacerbation of idiopathic pulmonary fibrosis and nonspecific interstitial pneumonia in 38 and 10% of the cases, respectively. Alveolar epithelium infection by cytomegalovirus was observed in 25% of organizing pneumonia patterns. These findings were coincident with nuclear cytopathic effects but without demonstration of cytomegalovirus inclusions. These data indicate that diffuse alveolar damage-related cytomegalovirus or measles virus infections enhance lung injury, and a direct involvement of these viruses in diffuse alveolar damage-related histological patterns is likely. Immunohistochemistry was more sensitive than the histological demonstration of cytomegalovirus or measles virus inclusions. We concluded that all patients with diffuse alveolar damage-related histological patterns should be investigated for cytomegalovirus and measles virus using sensitive immunohistochemistry in conjunction with routine procedures.
Resumo:
ABSTRACT Recombinant adenoviruses are currently under intense investigation as potential gene delivery and gene expression vectors with applications in human and veterinary medicine. As part of our efforts to develop a bovine adenovirus type 2 (BAV2) based vector system, the nucleotide sequence of BAV2 was determined. Sixty-six open reading frames (ORFs) were found with the potential to encode polypeptides that were at least 50 amino acid (aa) residue long. Thirty-one of the BAV2 polypeptide sequences were found to share homology to already identified adenovirus proteins. The arrangement of the genes revealed that the BAV2 genomic organization closely resembles that of well-characterized human adenoviruses. In the course of this study, continuous propagation of BAV2 over many generations in cell culture resulted in the isolation of a BAV2 spontaneous mutant in which the E3 region was deleted. Restriction enzyme, sequencing and PCR analyses produced concordant results that precisely located the deletion and revealed that its size was exactly 1299 bp. The E3-deleted virus was plaque-purified and further propagated in cell culture. It appeared that the replication of such a virus lacking a portion of the E3 region was not affected, at least in cell culture. Attempts to rescue a recombinant BAV2 virus with the bacterial kanamycin resistance gene in the E3 region yielded a candidate as verified with extensive Southern blotting and PCR analyses. Attempts to purify the recombinant virus were not successful, suggesting that such recombinant BAV2 was helper-dependent. Ten clones containing full-length BAV2 genomes in a pWE15 cosmid vector were constructed. The infectivity of these constructs was tested by using different transfection methods. The BAV2 genomic clones did appear to be infectious only after extended incubation period. This may be due to limitations of various transfection methods tested, or biological differences between virus- and E. co//-derived BAV2 DNA.
Resumo:
Adenoviruses are nonenveloped icosahedral shaped particles. The double stranded DNA viral genome is divided into 5 major early transcription units, designated E1 A, E1 B, and E2 to E4, which are expressed in a regulated manner soon after infection. The gene products of the early region 3 (E3), shown to be nonessential for viral replication in vitro, are believed to be involved in counteracting host immunosurveillance. In order to sequence the E3 region of Bovine adenovirus type 2 (BAV2) it was necessary to determine the restriction map for the plasmid pEA48. A physical restriction endonuclease map for BamHl, Clal, Eco RI, Hindlll, Kpnl, Pstt, Sail, and Xbal was constructed. The DNA insert in pEA48 was determined to be viral in origin using Southern hybridization. A human adenovirus type 5 recombinant plasmid, containing partial DNA fragments of the two transcription units L4 and L5 that lie just outside the E3, was used to localize this region. The recombinant plasmid pEA was subcloned to facilitate sequencing. The DNA sequences between 74.8 and 90.5 map units containing the E3, the hexon associated protein (pVIII), and the fibre gene were determined. Homology comparison revealed that the genes for the hexon associated pV11I and the fibre protein are conserved. The last 70 amino acids of the BAV2 pV11I were the most conserved, showing a similarity of 87 percent with Ad2 pV1I1. A comparison between the predicted amino acid sequences of BAV2 and Ad40, Ad41 , Ad2 and AdS, revealed that they have an identical secondary structure consisting of a tail, a shaft and a knob. The shaft is composed of 22, 15 amino acid motifs, with periodic glycines and hydrophobic residues. The E3 region was found to consist of about 2.3 Kbp and to encode four proteins that were greater than 60 amino acids. However, these four open reading frames did not show significant homology to any other known adenovirus DNA or protein sequence.
Resumo:
Adenoviruses are non-enveloped icosahedral-shaped particles which possess a double-stranded DNA genome. Currently, nearly 100 serotypes of adenoviruses have been identified, 48 of which are of human origin. Bovine adenoviruses (BAVs), causing both mild respiratory and/or enteral diseases in cattle, have been reported in many countries all over the world. Currently, nine serotypes of SAVs have been isolated which have been placed into two subgroups based on a number of characteristics which include complement fixation tests as well as the ability to replicate in various cell lines. Bovine adenovirus type 2 (BAV2), belonging to subgroup I, is able to cause pneumonia as well as pneumonic-like symptoms in calves. In this study, the genome of BAV2 (strain No. 19) was subcloned into the plasmid vector pUC19. In total, 16 plasmids were constructed; three carry internal San fragments (spanning 3.1 to 65.2% ), and 10 carry internal Pstl fragments (spanning 4.9 to 97.4%), of the viral genome. Each of these plasmids was analyzed using twelve restriction endonucleases; BamHI, CiaI, EcoRl, HiOOlll, Kpnl, Noll, NS(N, Ps~, Pvul, Saj, Xbal, and Xhol. Terminal end fragments were also cloned and analyzed, sUbsequent to the removal of the 5' terminal protein, in the form of 2 BamHI B fragments, cloned in opposite orientations (spanning 0 to 18.1°k), and one Pstll fragment (spanning 97.4 to 1000/0). These cloned fragments, along with two other plasmids previously constructed carrying internal EcoRI fragments (spanning 20.6 to 90.5%), were then used to construct a detailed physical restriction map using the twelve restriction endonucleases, as well as to estimate the size of the genome for BAV2(32.5 Kbp). The DNA sequences of the early region 1 (E1) and hexon-associated gene (protein IX) have also been determined. The amino acid sequences of four open reading frames (ORFs) have been compared to those of the E1 proteins and protein IX from other Ads.