999 resultados para bone width
Resumo:
Bone morphogenetic proteins (BMPs) are members of the TGFβ superfamily of secreted cysteine knot proteins that includes TGFβ1, nodal, activins and inhibins. BMPs were first discovered by Urist in the 1960s when he showed that implantation of demineralized bone into intramuscular tissue of rabbits induced bone and cartilage formation. Since this seminal discovery, BMPs have also been shown to play key roles in several other biological processes, including limb, kidney, skin, hair and neuronal development, as well as maintaining vascular homeostasis. The multifunctional effects of BMPs make them attractive targets for the treatment of several pathologies, including bone disorders, kidney and lung fibrosis, and cancer. This review will summarize current knowledge on the BMP signalling pathway and critically evaluate the potential of recombinant BMPs as pharmacological agents for the treatment of bone repair and tissue fibrosis in patients.
Resumo:
Aging results in deterioration of the immune system, which is associated with increased susceptibility to infection and impaired wound healing in the elderly. Phagocytosis is an essential process in both wound healing and immune defence. As such, age-related impairments in phagocytosis impact on the health of the elderly population. Phagocytic efficiency in peritoneal macrophages, bone marrow-derived macrophages and bone marrow monocytes from young and old mice was investigated. Aging significantly impaired phagocytosis by peritoneal macrophages, both in vitro and in vivo. However, bone marrow-derived macrophages and bone marrow monocytes did not exhibit age-related impairments in phagocytosis, suggesting no intrinsic defect in these cells. We sought to investigate underlying mechanisms in age-related impairments in phagocytosis by peritoneal macrophages. We hypothesized that microenvironmental factors in the peritoneum of old mice impaired macrophage phagocytosis. Indeed, macrophages from young mice injected into the peritoneum of old mice exhibited impaired phagocytosis. Proportions of peritoneal immune cells were characterized, and striking increases in numbers of T cells, B1 and B2 cells were observed in the peritoneum of old mice compared with young mice. In addition, B cell-derived IL-10 was increased in resting and LPS-activated peritoneal cell cultures from old mice. These data demonstrate that aging impairs phagocytosis by tissue-resident peritoneal macrophages, but not by bone marrow-derived macrophages/monocytes, and suggest that age-related defects in macrophage phagocytosis may be due to extrinsic factors in the tissue microenvironment. As such, defects may be reversible and macrophages could be targeted therapeutically in order to boost immune function in the elderly.
Resumo:
Accurate models of cement and interface fatigue are essential if computationally assessing risk of aseptic loosening of cemented joint replacements is to become clinically relevant. A series of approaches will be presented that attempt to model several aspects of bone cement fatigue relevant to predicting cemented joint replacement failure. Failure models for homogeneous (bulk) bone cement and its interface with implant and host tissue are reviewed. Variability introduced by porosity and interaction between fatigue and creep are also considered. Finally, some current and potential future developments are discussed.
Resumo:
Gremlin (Grem1) is a member of the DAN family of secreted bone morphogenetic protein (BMP) antagonists. Bone morphogenetic protein-7 (BMP-7) mediates protective effects during renal fibrosis-associated with diabetes and other renal diseases. The pathogenic mechanism of Grem1 during DN has been suggested to be binding and inhibition of BMP-7. However, the precise interactions between Grem1, BMP-7 and other BMPs have not been accurately defined. Here we show the affinity of Grem1 for BMP-7 is lower than that of BMP-2 and BMP-4, using a combination of surface plasmon resonance and cell culture techniques. Using kidney proximal tubule cells and HEK-293 cell Smad1/5/8 phosphorylation and BMP-dependent gene expression as readout, Grem1 consistently demonstrated a higher affinity for BMP-2>4>7. Cell-associated Grem1 did not inhibit BMP-2 or BMP-4 mediated signalling, suggesting that Grem1-BMP-2 binding occurred in solution, preventing BMP receptor activation. These data suggest that Grem1 preferentially binds to BMP-2 and this may be the dominant complex in a disease situation where levels of Grem1 and BMPs are elevated.
Resumo:
Background: Primary results from the phase 3 ALSYMPCA trial showed that radium-223 dichloride (radium-223), a targeted α-emitter, improved overall survival compared with placebo and was well tolerated in patients with castration-resistant prostate cancer and symptomatic bone metastases. We did a prespecified subgroup analysis from ALSYMPCA to assess the effect of previous docetaxel use on the efficacy and safety of radium-223.
Methods: In the phase 3, randomised, double-blind ALSYMPCA trial, patients with symptomatic castration-resistant prostate cancer, at least two symptomatic bone metastases, no known visceral metastases, and who were receiving best standard of care were randomly assigned (2:1) via an interactive voice response system to receive six injections of radium-223 (50 kBq/kg intravenously) or matching placebo, with one injection given every 4 weeks. Patients had either received previous docetaxel treatment or were unsuitable for or declined docetaxel; previous docetaxel use (yes or no) was a trial stratification factor. We investigated the effect of previous docetaxel use on radium-223 treatment for the primary endpoint of overall survival, the main secondary efficacy endpoints, and safety. Efficacy analyses were done for the intention-to-treat population; safety analyses were done for the safety population. The trial has been completed and is registered with ClinicalTrials.gov, number NCT00699751.
Findings: Randomisation took place between June 12, 2008, and Feb 1, 2011. 526 (57%) of 921 randomly assigned patients had received previous docetaxel treatment (352 in the radium-223 group and 174 in the placebo group) and 395 (43%) had not (262 in the radium-223 group and 133 in the placebo group). Radium-223 prolonged median overall survival compared with placebo, irrespective of previous docetaxel use (previous docetaxel use, hazard ratio [HR] 0·70, 95% CI 0·56-0·88; p=0·002; no previous docetaxel use, HR 0·69, 0·52-0·92; p=0·01). The benefit of radium-223 compared with placebo was seen in both docetaxel subgroups for most main secondary efficacy endpoints; risk for time to time to first symptomatic skeletal event was reduced with radium-223 versus placebo in patients with previous docetaxel use, but the difference was not significant in those with no previous docetaxel use. 322 (62%) of 518 patients previously treated with docetaxel had grade 3-4 adverse events, compared with 205 (54%) of 383 patients without docetaxel. Patients who had previously been treated with docetaxel had a higher incidence of grade 3-4 thrombocytopenia with radium-223 than with placebo (31 [9%] of 347 patients vs five [3%] of 171 patients), whereas the incidence was similar between treatment groups among patients with no previous docetaxel use (seven [3%] of 253 patients vs one [1%] of 130 patients). The incidences of grade 3-4 anaemia and neutropenia were similar between the radium-223 and placebo groups within both docetaxel subgroups.
Interpretation: Radium-223 is effective and well tolerated in patients with castration-resistant prostate cancer and symptomatic bone metastases, irrespective of previous docetaxel use.
Funding: Algeta ASA and Bayer HealthCare Pharmaceuticals.
Resumo:
The broad aim of this work was to investigate and optimise the properties of calcium phosphate bone cements (CPCs) for use in vertebroplasty to achieve effective primary fixation of spinal fractures. The incorporation of collagen, both bovine and from a marine sponge (Chondrosia reniformis), into a CPC was investigated. The biological properties of the CPC and collagen-CPC composites were assessed in vitro through the use of human bone marrow stromal cells. Cytotoxicity, proliferation and osteoblastic differentiation were evaluated using lactate dehydrogenase, PicoGreen and alkaline phosphatase activity assays respectively. The addition of both types of collagen resulted in an increase in cytotoxicity, albeit not to a clinically relevant level. Cellular proliferation after 1, 7 and 14 days was unchanged. The osteogenic potential of the CPC was reduced through the addition of bovine collagen but remained unchanged in the case of the marine collagen. These findings, coupled with previous work showing that incorporation of marine collagen in this way can improve the physical properties of CPCs, suggest that such a composite may offer an alternative to CPCs in applications where low setting times and higher mechanical stability are important.
Resumo:
Bioprospecting has led to increased interest in potential applications for marine organisms and their by-products. As a rich source of mineralising porous organisms, our seas and oceans could provide new directions for bone tissue engineering particularly in the supply of biomimetic templates that may enhance in vivo and ex vivo bone formation. In this chapter we examine the history of marine organism use in this field; exploring how these organisms could be utilised, given the problems of sustainability, and reviewing the current evidence to support their use for bone repair and regeneration.
Resumo:
Currently there is no reliable objective method to quantify the setting properties of acrylic bone cements within an operating theatre environment. Ultrasonic technology can be used to determine the acoustic properties of the polymerising bone cement, which are linked to material properties and provide indications of the physical and chemical changes occurring within the cement. The focus of this study was the critical evaluation of pulse-echo ultrasonic test method in determining the setting and mechanical properties of three different acrylic bone cement when prepared under atmospheric and vacuum mixing conditions. Results indicated that the ultrasonic pulse-echo technique provided a highly reproducible and accurate method of monitoring the polymerisation reaction and indicating the principal setting parameters when compared to ISO 5833 standard, irrespective of the acrylic bone cement or mixing method used. However, applying the same test method to predict the final mechanical properties of acrylic bone cement did not prove a wholly accurate approach. Inhomogeneities within the cement microstructure and specimen geometry were found to have a significant influence on mechanical property predictions. Consideration of all the results suggests that the non-invasive and non-destructive pulse-echo ultrasonic test method is an effective and reliable method for following the full polymerisation reaction of acrylic bone cement in real-time and then determining the setting properties within a surgical theatre environment. However the application of similar technology for predicting the final mechanical properties of acrylic bone cement on a consistent basis may prove difficult.