953 resultados para bismutoferrite, chapmanite, kaolinite, Raman spectroscopy, infrared spectroscopy, hydroxyl ions, adsorbed water, hydrogen bonds
Resumo:
The surface modifications induced on Teflon FEP and Mylar C polymer films by a low energy electron beam are probed using Raman and FTIR spectroscopy. The electron beam, which does not affect the Mylar C, surface, may break the copolymer chain into its monomers degrading the Teflon FEP surface. For Mylar C the electron beam decreases the roughness of the polymer surface. This difference in behavior may explain recent results in which the surface modifications investigated by measuring the second crossover energy shift in the electronic emission curve differed for the two polymers (Chinaglia et al [1]). In addition, the Raman data showed no evidence of carbon formation for either polymer samples, which is explained by the fact that only a low energy electron beam is used.
Resumo:
Molecular-level interactions are found to bind iron tetrasulfonated phthalocyanine (FeTsPc) and the polyelectrolyte poly(allylamine hydrochloride) (PAH) in electroactive layer-by-layer (LBL) films. These interactions have been identified by comparing Fourier transform infrared (FTIR) and Raman spectroscopy data from bulk samples of FeTsPc and PAH with those from FeTsPc/PAH LBL films. of particular importance were the SO3- -NH3 interactions that we believe to bind PAH and FeTsPc and the interactions between unprotonated amine groups of PAH and the coordinating metal of the phthalocyanine. The multilayer formation was monitored via UV-vis spectroscopy by measuring the increase in the Q band of FeTsPc at 676 nm. Film thickness estimated with profilometry was ca. I I Angstrom per bilayer for films adsorbed on glass. Reflection absorption infrared spectroscopy (RAIRS) revealed an anisotropy in the LBL film adsorbed on gold with FeTsPc molecules oriented perpendicularly to the substrate plane. Cyclic voltammograms showed reproducible pairs of oxidation-reduction peaks at 1.07 and 0.81 V, respectively, for a 50-bilayer PAH/FeTsPc film at 50 mV/s (vs Ag/Ag+). The peak shape and current dependence on the scan rate suggest that the process is a diffusion controlled charge transport. In the presence of dopamine, the electroactivity of FeTsPc/PAH LBL films vanishes due to a passivation effect. Dopamine activity is not detected either because the interaction between Fe atoms and NH2 groups prevents dopamine molecules from coordinating with the Fe atoms.
Resumo:
Films containing different volumes of latex of natural rubber (NR) in a fixed mass of poly (vinylidene fluoride) (PVDF) powder were fabricated by compressing under annealing a mixture of both materials without using any solvent. This is an important issue keeping in mind that these films have to be used in the future as biomaterials in different applications once the solvents that are used to dissolve the PVDF become toxic to human. The films with different percentage of latex in PVDF were characterized using microRaman scattering and Fourier transform infrared absorption (FTIR) spectroscopies, thermomechanical techniques using thermogravimetry (TG), differential scanning calorimetry (DSC), dynamical-mechanical analysis (DMA) and scanning electron microscopy (SEM). The results showed that the latex of NR and PVDF do not interact chemically, leading to the formation of a polymeric blend with high thermal stability and mechanical properties suitable for applications involving bone (prostheses, for instance). Besides, the results recorded using the micro-Raman technique revealed that for a fixed amount of PVDF the higher the amount of latex in the blend, the better the miscibility between both materials. Copyright (c) 2005 John Wiley & Sons, Ltd.
Resumo:
The nanoscale interactions between adjacent layers of layer-by-layer (LBL) films from poly(allylamine hydrochloride) (PAH) and azodye Brilliant Yellow (BY) have been investigated, with the films employed for optical storage and the formation of surface-relief gratings. Using Fourier transform infrared spectroscopy, we identified interactions involving SO3- groups from BY and NH3+ groups from PAH. These electrostatic interactions were responsible for the slow kinetics of writing in the optical storage experiments, due to a tendency to hinder photoisomerization and the subsequent reorientation of the azochromophores. The photoinduced birefringence did not saturate after one hour of exposure to the writing laser, whereas in azopolymer films, saturation is normally reached within a few minutes. on the other hand, the presence of such interactions prevented thermal relaxation of the chromophores after the writing laser was switched off, leading to a very stable written pattern. Moreover, the nanoscale interactions promoted mass transport for photoinscription of surface-relief gratings on PAH/BY LBL films, with the azochromophores being able to drag the inert PAH chains when undergoing the trans-cis-trans photoisomerization cycles. A low level of chromophore degradation was involved in the SRG photoinscription, which was confirmed with micro-Raman and fluorescence spectroscopies.
Resumo:
Lead zirconate titanate, Pb(Zr0.3Ti0.7)O-3 (PZT) thin films were prepared with success by the polymeric precursor method. Differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), Fourier-transform infrared spectroscopy (FT-IR), Micro-Raman spectroscopy and X-ray diffraction (XRD) were used to investigate the formation of the PZT perovskite phase. X-ray diffraction revealed that the film showed good crystallinity and no presence of secondary phases was identified. This indicates that the PZT thin films were crystallized in a single phase. PZT thin films showed a well-developed dense grain structure with uniform distribution, without the presence of rosette structure. The Raman spectra undoubtedly revealed these thin films in the tetragonal phase. For the thin films annealed at the 500-700 degreesC range, the vibration modes of the oxygen sublattice of the PZT perovskite phase were confirmed by FT-IR. The room temperature dielectric constant and dielectric loss of the PZT films, measured at 1 kHz were 646 and 0.090, respectively, for thin film with 365 nm thickness annealed at 700 degreesC for 2 h. A typical P-E hysteresis loop was observed and the measured values of P-s, P-r and E-c were 68 muC/cm(2), 44 muC/cm(2) and 123 kV/cm, respectively. The leakage current density was about 4.8 x 10(-7) A/cm(2) at 1.5 V. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Barium titanate thin films were prepared by the polymeric precursor method and deposited onto Pt/Ti/SiO2/Si substrates. X-ray diffraction (XRD), scanning electron microscopy (SEM) and atomic force microscopy (AFM), Fourier transform infrared spectroscopy (FT-IR) and micro-Raman spectroscopy were used to investigate the formation of the BaTiO3 perovskite phase. Afterwards, the films were submitted to post-annealing treatments in oxygen and nitrogen atmospheres at 300 degreesC for 2 h, and had their dielectric properties measured. It was observed that the electric properties of the thin films are very sensitive to the nature of the post-annealing atmosphere. This study demonstrates that post-annealing in an oxygen atmosphere increases the dielectric relaxation phenomenon and that post-annealing in a nitrogen atmosphere produces a slight dielectric relaxation. (C) 2004 Elsevier B.V All rights reserved.
Resumo:
SnO2:m mol% CoO (0.5 less than or equal to m less than or equal to 6.0) ceramic specimens were studied by impedance spectroscopy in the 5 Hz-13 MHz frequency range during heating cold-pressed specimens from room temperature to 1250 degrees C. The electrical resistivity during sintering decreases from 4 to 6 orders of magnitude in the 400-1500 K temperature range depending on the amount of CoO. An increase in electrical resistivity in the 570-670 K range is related to the release of adsorbed water. The results for the 970-1500 K show that the higher the amount of the CoO addition, the lower is the temperature at which SnO2:CoO reaches a minimum electrical resistivity. This suggests that oxygen point defects created by dissolution of cobalt ions in the SnO2 lattice are controlling the densification rate of these ceramics.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de NÃvel Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de NÃvel Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento CientÃfico e Tecnológico (CNPq)
Resumo:
MoO3 is a lamellar material with applications in different areas, as solid lubricants, catalysis, solar cells, etc. In the present work, MoO3 powders, synthesized by the polymeric precursor method, were doped with nickel or cobalt. The powder precursors were characterized by TG/DTA. After calcination between 500 and 700 degrees C, the samples were characterized by X-ray diffraction, infrared and Raman spectroscopy and scanning electron microscopy. beta-MoO3 was obtained after calcination at low temperatures. With the temperature increase, alpha-MoO3 is observed, with a preferential growth of the (0 2k 0) planes, when the material is doped and calcined at 700 degrees C. Doping with nickel increases five times the preferential growth. As a consequence, plate-like particles are observed. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento CientÃfico e Tecnológico (CNPq)
Resumo:
Diverse amorphous hydrogenated carbon and similar films containing additional elements were produced by Plasma Enhanced Chemical Vapor Deposition (PECVD) and by Plasma Immersion Ion Implantation and Deposition (PIIID). Thus a-C:H, a-C:H:F, a-C:H:N, a-C:H:Cl and a-C:H:O:Si were obtained, starting from the same feed gases, using both techniques. The same deposition system supplied with radiofrequency (RF) power was used to produce all the films. A cylindrical stainless steel chamber equipped with circular electrodes mounted horizontally was employed. RF power was fed to the upper electrode; substrates were placed on the lower electrode. For PIIID negative high tension pulses were also applied to the lower electrode. Raman spectroscopy confirmed that all the films are amorphous. Chemical characterization of each pair of films was undertaken using Infrared Reflection Absorption Spectroscopy and X-ray Photoelectron Spectroscopy. The former revealed the presence of specific structures, such as C-H, C-O, O-H. The latter allowed calculation of the ratio of hetero-atoms to carbon atoms in the films, e. g. F:C, N:C, and Si:C. Only relatively small differences in elemental composition were detected between films produced by the two methods. The deposition rate in PIIID is generally reduced in relation to that of PECVD; for a-C:H:Cl films the reduction factor is almost four.
Resumo:
The preparation and characterization of transparent glass-ceramics in the composition of 30Li2O:5ZrO2:xBaO:(100-x) SiO2 with x = 0, 5, 10, 15, and 20 mol% are described. Glasses were melted in a platinum crucible at 1100°C for 2 h and then heat-treated at 900°C for 3 h. The characterizations were performed by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman and infrared spectroscopy, and scanning electron microscopy (SEM). The experimental results indicate that there was a structural change in the glass-ceramics as the BaO concentration in the mixture increased. In the XRD patterns of samples without heat treatment, only the halo was observed. After heat treatment, the appearance of the materials was verified by X-ray diffraction peaks. The reorganization of the amorphous solid was confirmed by Raman and IR spectroscopy along with XPS and SEM, with a more homogeneous phase formation being observed.
Resumo:
SiO2 (1-x) - TiO2 (x) waveguides, with the mole fraction x in the range 0.07 - 0.20 and thickness of about 0.4 μm, were deposited on silica substrates by a dip-coating technique. The thermal treatments at 700-900°C, used to fully densify the xerogels, produce nucleation of TiO2 nanocrystals even for the lowest TiO2 content. The nucleation of TiO2 nanocrystals and their growth by thermal annealing up to 1300°C were studied by waveguide Raman spectroscopy, for the SiO2 (0.8) - TiO2 (0.2) composition. By increasing the annealing temperature, the Raman spectrum evolves from that typical of the silica-titania glass to that of anatase, but brookite phase is dominant at intermediate temperatures. In the low. frequency region (5-50 cm-1) of the Raman spectra, acoustic vibrations of the nanocrystals are observed. From the measured line shapes, we can deduce the size distribution of the particles. The results are compared with those obtained from the line widths in the X-ray diffraction patterns. Nanocrystals with a mean size in the range 4-20 nm are obtained, by thermal annealing in a corresponding range of 800-1300°C.