961 resultados para bioluminescence resonance energy transfer (BRET)
Resumo:
Laser induced photoacoustic (PA) technique is used in the study of photostability of polymethyl methacrylate (PMMA) films doped with Rhodamine 6G -Rhodamine B dye system. Energy transfer from a donor molecule to an acceptor molecule in a dye mixture affects the output of the dye system. Details of investigations on the role of laser power, modulation frequency and the irradiation wavelength on the photosensitivity of the dye mixture doped PMMA films are presented.
Resumo:
The present work aims at deciphering the processes that control the nutrient distribution along the EEZ (Exclusive Economic Zone of India) of the west coast of India and to bring out its linkage with primary and secondary productivity. This work assume utmost importance as very few studies have hitherto focused entirely on the EEZ of the west coast of India to address the biochemical responses brought about by monsoons. The present study examines the seasonal variations in physicochemical parameters and associated primary biological responses along the west coast of India. This study targets to measure and understand the shelf ocean exchange in a typical coastal upwelling region of the southeast Arabian Sea, and the influence of convective mixing along the northern part of the west coast of India. The study focuses more directly on coastal upwelling along the southwest coast of India, within the EEZ. The effects of coastal upwelling, eddy formation and the offshore advection are apparent in the present investigation. This has consequences to fisheries and climate, in energy transfer to the food chain and the increased sequestering of carbon in the ocean. The study also focuses on the Oxygen Minimum Zone (OMZ) and dentrification observed along the EEZ of the west coast of India on a seasonal scale. In the study, an attempt is also made to demarcate the geographical boundaries of the denitrification zone in the EEZ of India and on the nature and magnitude of these variations, on a seasonal and inter annual scales
Resumo:
In this paper, the fluorescence behaviour of nano colloids of ZnO has been studied as a function of the excitation wavelength. We have found that excitation at the tail of the absorption band gives rise to an emission that shifts with the change of the excitation wavelength. The excitation wavelength dependent shift of the fluorescence maximum is measured to be between 60 and 100 nm. This kind of excitation wavelength dependent fluorescence behaviour, which may appear to be in violation of Kasha’s rule of excitation wavelength independence of the emission spectrum, has been observed for nano ZnO colloids prepared by two different chemical routes and different capping agents. It is shown that the existence of a distribution of energetically different molecules in the ground state coupled with a low rate of the excited state relaxation processes, namely, solvation and energy transfer, are responsible for the excitation wavelength dependent fluorescence behaviour of the systems.
Resumo:
In this paper, the fluorescence behaviour of nano colloids of ZnO has been studied as a function of the excitation wavelength. We have found that excitation at the tail of the absorption band gives rise to an emission that shifts with the change of the excitation wavelength. The excitation wavelength dependent shift of the fluorescence maximum is measured to be between 60 and 100 nm. This kind of excitation wavelength dependent fluorescence behaviour, which may appear to be in violation of Kasha’s rule of excitation wavelength independence of the emission spectrum, has been observed for nano ZnO colloids prepared by two different chemical routes and different capping agents. It is shown that the existence of a distribution of energetically different molecules in the ground state coupled with a low rate of the excited state relaxation processes, namely, solvation and energy transfer, are responsible for the excitation wavelength dependent fluorescence behaviour of the systems.
Resumo:
The subject of Photonics is concerned with the generation,control and utilization of photons for performing a variety of tasks.It came to existence as a consequence of the harmonious fusion of optical methods with electronic technology.Wide spread use of laser based methods in electronics is slowly replacing elecrtons with photons in the field of Communication,Control and Computing .Therefore,there is a need to promote the R & D activities in the area of Photonics and to generate well trained manpower in laser related fields.Development and characterization of photonic materials is an important subject of research in the field of Photonics.Optical and thermal characterization of photonic materials using thermal lens technique is a PhD thesis in the field of Photonics in which the author describes how thermal lens effect can be used to characterize themal and optical properties of photonic materials.Plausibility of thermal lens based logic gates is also presented in this thesis.
Resumo:
A sensitive method based on the principle of photothermal phenomena to study the energy transfer processes in organic dye mixtures is presented. A dual beam thermal lens method can be very effectively used as an alternate technique to determine the molecular distance between donor and acceptor in fluorescein–rhodamine B mixture using optical parametric oscillator.
Resumo:
Two-photon excited (TPE) side illumination fluorescence studies in a Rh6G-RhB dye mixture doped polymer optical fiber (POF) and the effect of energy transfer on the attenuation coefficient is reported. The dye doped POF is pumped sideways using 800 nm, 70 fs laser pulses from a Ti:sapphire laser, and the TPE fluorescence emission is collected from the end of the fiber for different propagation distances. The fluorescence intensity of RhB doped POF is enhanced in the presence of Rh6G as a result of energy transfer from Rh6G to RhB. Because of the reabsorption and reemission process in dye molecules, an effective energy transfer is observed from the shorter wavelength part of the fluorescence spectrum to the longer wavelength part as the propagation distance is increased in dye doped POF. An energy transfer coefficient is found to be higher at shorter propagation distances compared to longer distances. A TPE fluorescence signal is used to characterize the optical attenuation coefficient in dye doped POF. The attenuation coefficient decreases at longer propagation distances due to the reabsorption and reemission process taking place within the dye doped fiber as the propagation distance is increased.
Resumo:
Multimode laser emission is observed in a polymer optical fiber doped with a mixture of Rhodamine 6G (Rh 6G) and Rhodamine B (Rh B) dyes. Tuning of laser emission is achieved by using the mixture of dyes due to the energy transfer occurring from donor molecule (Rh 6G) to acceptor molecule (Rh B). The dye doped poly(methyl methacrylate)-based polymer optical fiber is pumped axially at one end of the fiber using a 532 nm pulsed laser beam from a Nd:YAG laser and the fluorescence emission is collected from the other end. At low pump energy levels, fluorescence emission is observed. When the energy is increased beyond a threshold value, laser emission occurs with a multimode structure. The optical feedback for the gain medium is provided by the cylindrical surface of the optical fiber, which acts as a cavity. This fact is confirmed by the mode spacing dependence on the diameter of the fiber.
Resumo:
The photosensitivity of dye mixture-doped polymethyl methacrylate (PMMA) films are investigated as a function of laser power, concentration of the dyes, modulation frequency and the irradiation wavelength. Energy transfer from a donor molecule to an acceptor molecule affects the emission output of the dye mixture system. Photosensitivity is found to change with changes in donor–acceptor concentrations. PMMA samples doped with the dye mixture are found to be more photosensitive when the dyes are mixed in the same proportion.
Resumo:
Dynamics of Nd:YAG laser with intracavity KTP crystal operating in two parallel polarized modes is investigated analytically and numerically. System equilibrium points were found out and the stability of each of them was checked using Routh–Hurwitz criteria and also by calculating the eigen values of the Jacobian. It is found that the system possesses three equilibrium points for (Ij, Gj), where j = 1, 2. One of these equilibrium points undergoes Hopf bifurcation in output dynamics as the control parameter is increased. The other two remain unstable throughout the entire region of the parameter space. Our numerical analysis of the Hopf bifurcation phenomena is found to be in good agreement with the analytical results. Nature of energy transfer between the two modes is also studied numerically.
Resumo:
The main objective of the present study is to have a detailed investigation on the gelation properties, morphology and optical properties of small π-conjugated oligomers. For this purpose we have chosen oligo(p-phenylenevinylene)s (OPVs), a class of molecules which have received considerable attention due to their unique optical and electronic properties. Though a large number of reports are available in the literature on the self-assembly properties of tailor made OPVs, none of them pertain to the design of nanostructures based on organogels. In view of this, we aimed at the creation of functional chromophoric assemblies of π-conjugated OPVs through the formation of organogels, with the objective of crafting nanoscopic assemblies of different size and shape thereby modulating their optical and electronic properties.In order to fulfill the above objectives, the design and synthesis of a variety of OPVs with appropriate structural variations were planned. The design principle involves the derivatization of OPVs with weak H-bonding hydroxymethyl end groups and with long aliphatic hydrocarbon side chains. The noncovalent interactions in these molecules were expected to lead the formation of supramolecular assembly and gels in hydrocarbon solvents. In such an event, detailed study of gelation and extensive analysis of the morphology of the gel structures were planned using advanced microscopic techniques. Since OPVs are strongly fluorescent molecules, gelation is expected to perturb the optical properties. Therefore, detailed study on the gelation induced optical properties as a way to probe the nature and stability of the selfassembly was planned. Apart from this, the potential use of the modulation of the optical properties for the purpose of light harvesting was aimed. The approach to this problem was to entrap an appropriate energy trap to the OPV gel matrix which may lead to the efficient energy transfer from the OPV gel based donor to the entrapped acceptor. The final question that we wanted to address in this investigation was the creation of helical nanostructures through proper modification of the OPV backbone With chiral handles.The present thesis is a detailed and systematic approach to the realization of the above objectives which are presented in different chapters of the thesis.
Resumo:
Observing the wide possibilities of fluorescent dyes, an exhaustive investigation is done in laser dyes mainly focusing on Coumarin 540 which has a very strong emission in the green region. The photophysics of the dye is studied in detail in a good number of solvent environments. The results of the amplified spontaneous emission and lasing behaviour in both dye solution and different polymer solid state matrices and the ptotostability of the these matrices are investigated using the photoacoustic technique and the same are also included in this thesis. The energy transfer behaviour in dye mixtures which could be utilized for laser studies and bio-analysis are also presented. The nonlinear characterization of Coumarin540 forms the last part of the experimental investigations presented in the thesis.
Resumo:
The thesis entitled: ‘Synthesis and Photochemistry of a few Olefin appended Dibenzobarrelenes and Bisdibenzobarrelenes’ is divided into 5 chapters.In Chapter 1, the fundamental concepts of Diels-Alder reaction, di-r:methane rearrangement and energy transfer process in organic photochemistry is discussed.Chapter 2 presents the synthesis of 9-olefin appended anthracenes and bisanthracenes. The target of synthesising various bridgehead olefin appended dibenzobarrelenes and some novel bisdibenzobarrelenes, led us to the synthesis of the appropriate alkenylanthracenes and bisanthracenes as precursor molecules. Diels-Alder reaction was the synthetic tool for the preparation of the target olefin appended dibenzobarrelenes and bisdibenzobarrelenes. This chapter attempts to throw light on our endeavours in synthesising the various 9-alkenylanthracenes and bisanthracenes.Chapter 3 deals with the synthesis of olefin appended dibenzobarrelenes and bisdibenzobarrelenes. Ever since the discovery of di-It-methane rearrangement dibenzobarrelenes, tailored with dijferent substituents at various positions have always been a tool to photochemists in unravelling the mechanisms of light induced reactions. Our intention of analysing the role of a It-moiety at the bridgehead position of the dibenzobarrelene, was synthetically envisaged via the Diels-Alder reaction. Bisdibenzobarrelenes were synthesised through tandem Diels-Alder reaction. Various alkenylanthracenes and bisanthracenes were employed as dienes and the dienophiles used were dimethyl acetylenedicarboxylate and dibenzoylacetylene. In this chapter, we report our venture in synthesising the various olefin appended dibenzobarrelenes and bisdibenzobarrelenes. Chapter 4 describes the preliminary time-resolved fluorescence studies of some olefin appended dibenzobarrelenes and bisdibenzobarrelenes.To understand the primary and secondary physicochemical processes in a photochemical reaction it is necessary to characterise the excited states and the transient intermediates during their short lifetime. A number of methods developed on the basis of the physical properties of the transient species are available for their detection. Time-correlated single-photon counting technique has been utilised in the present study of the excited states of olefin appended dibenzobarrelenes and bisdibenzobarrelenes. To understand the primary and secondary physicochemical processes in a photochemical reaction it is necessary to characterise the excited states and the transient intermediates during their short lifetime. A number of methods developed on the basis of the physical properties of the transient species are available for their detection. Time-correlated single-photon counting technique has been utilised in the present study of the excited states of olefin appended dibenzobarrelenes and bisdibenzobarrelenes.Chapter 5 portrays the photochemistry of olefin appended dibenzobarrelenes and bisdibenzobarrelenes. Dibenzocyclooctatetraene and dibenzosemibullvalene are the photoproducts obtained respectively through the singlet excited state and the triplet excited state of dibenzobarrelenes. Chemical literature shows evidences of the photoreactivity of dibenzobarrelenes generating both the singlet and triplet mediated photoproducts, in a single photoreaction. Our research target in synthesising various bridgehead olefin appended dibenzobarrelenes and bisdibenzobarrelenes, was based on the perception that olefins are eflicient triplet quenchers, thereby quenching intramolecularly the triplet excited state of the barrelenes. A It-moiety at the bridgehead position of the dibenzobarrelene, creates a tetra tr-methane system, which similar to a 6li—7l' or tri-tr-methane systems, could be the fertile ground for interesting photochemical rearrangements. Our attempts in deciphering the photochemistry of the olefin appended dibenzobarrelenes and bisdibenzobarrelenes is the substance of this chapter.
Resumo:
This thesis contains the author's work in preparing efficient EL phosphors, the details of fabrication of low voltage operated thin film EL (TFEL) devices and DC TFEL devices. Some of the important work presented here are related to the white light emitting ZnS:Cu,Pr,Cl phosphor which can be colour tuned by changing the excitation frequency, observation of energy transfer from Cu/Ag ions to rare earth ions in ZnS:(Cu/Ag), RE,Cl phosphors, development of TFEL device which can be operated below 50V, optimization of the device parameters for long life, high brightness in terms of the active and insulating layer thicknesses, observation of dependence of threshold voltage for the onset of emission on frequency of excitation when a novel dielectric Eu2O3 film was used as insulator and the devices with multicolor emission using ZnS doped with rare earth as active layer. Characterization based on other devices based on ZnS:Sm, ZnS:Pr, ZnS:Dy and their emission characteristics are also illustrated
Resumo:
The thesis begins with a review of basic elements of general theory of relativity (GTR) which forms the basis for the theoretical interpretation of the observations in cosmology. The first chapter also discusses the standard model in cosmology, namely the Friedmann model, its predictions and problems. We have also made a brief discussion on fractals and inflation of the early universe in the first chapter. In the second chapter we discuss the formulation of a new approach to cosmology namely a stochastic approach. In this model, the dynam ics of the early universe is described by a set of non-deterministic, Langevin type equations and we derive the solutions using the Fokker—Planck formalism. Here we demonstrate how the problems with the standard model, can be eliminated by introducing the idea of stochastic fluctuations in the early universe. Many recent observations indicate that the present universe may be approximated by a many component fluid and we assume that only the total energy density is conserved. This, in turn, leads to energy transfer between different components of the cosmic fluid and fluctuations in such energy transfer can certainly induce fluctuations in the mean to factor in the equation of state p = wp, resulting in a fluctuating expansion rate for the universe. The third chapter discusses the stochastic evolution of the cosmological parameters in the early universe, using the new approach. The penultimate chapter is about the refinements to be made in the present model, by means of a new deterministic model The concluding chapter presents a discussion on other problems with the conventional cosmology, like fractal correlation of galactic distribution. The author attempts an explanation for this problem using the stochastic approach.